Gotowa bibliografia na temat „Discrete Velocity Boltzmann Schemes”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Discrete Velocity Boltzmann Schemes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Discrete Velocity Boltzmann Schemes"

1

Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamic Quadrature Scheme for Solving Boltzmann Equation with Discrete Ordinate and Lattice Boltzmann Methods." Communications in Computational Physics 11, no. 4 (2012): 1397–414. http://dx.doi.org/10.4208/cicp.150510.150511s.

Pełny tekst źródła
Streszczenie:
AbstractThe Boltzmann equation (BE) for gas flows is a time-dependent nonlinear differential-integral equation in 6 dimensions. The current simplified practice is to linearize the collision integral in BE by the BGK model using Maxwellian equilibrium distribution and to approximate the moment integrals by the discrete ordinate method (DOM) using a finite set of velocity quadrature points. Such simplification reduces the dimensions from 6 to 3, and leads to a set of linearized discrete BEs. The main difficulty of the currently used (conventional) numerical procedures occurs when the mean veloci
Style APA, Harvard, Vancouver, ISO itp.
2

Mischler, Stéphane. "Convergence of Discrete-Velocity Schemes for the Boltzmann Equation." Archive for Rational Mechanics and Analysis 140, no. 1 (1997): 53–77. http://dx.doi.org/10.1007/s002050050060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Buet, C. "Conservative and Entropy Schemes for Boltzmann Collision Operator of Polyatomic Gases." Mathematical Models and Methods in Applied Sciences 07, no. 02 (1997): 165–92. http://dx.doi.org/10.1142/s0218202597000116.

Pełny tekst źródła
Streszczenie:
We propose two discrete velocity models derived from the Boltzmann equation of Larsen–Borgnakke type for polyatomic gases. These two models are natural extensions of previously discussed discrete velocity models used for monoatomic gases. These two models have the same properties as the continuous one, which are conservation of mass, momentum and energy, discrete Maxwellians as equilibrium states and H-theorems.
Style APA, Harvard, Vancouver, ISO itp.
4

Diaz, Manuel A., Min-Hung Chen, and Jaw-Yen Yang. "High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation." Communications in Computational Physics 18, no. 4 (2015): 1012–49. http://dx.doi.org/10.4208/cicp.171214.210715s.

Pełny tekst źródła
Streszczenie:
AbstractHigh-order and conservative phase space direct solvers that preserve the Euler asymptotic limit of the Boltzmann-BGK equation for modelling rarefied gas flows are explored and studied. The approach is based on the conservative discrete ordinate method for velocity space by using Gauss Hermite or Simpsons quadrature rule and conservation of macroscopic properties are enforced on the BGK collision operator. High-order asymptotic-preserving time integration is adopted and the spatial evolution is performed by high-order schemes including a finite difference weighted essentially non-oscill
Style APA, Harvard, Vancouver, ISO itp.
5

MATTILA, KEIJO K., DIOGO N. SIEBERT, LUIZ A. HEGELE, and PAULO C. PHILIPPI. "HIGH-ORDER LATTICE-BOLTZMANN EQUATIONS AND STENCILS FOR MULTIPHASE MODELS." International Journal of Modern Physics C 24, no. 12 (2013): 1340006. http://dx.doi.org/10.1142/s0129183113400068.

Pełny tekst źródła
Streszczenie:
The lattice Boltzmann (LB) method, based on mesoscopic modeling of transport phenomena, appears to be an attractive alternative for the simulation of complex fluid flows. Examples of such complex dynamics are multiphase and multicomponent flows for which several LB models have already been proposed. However, due to theoretical or numerical reasons, some of these models may require application of high-order lattice-Boltzmann equations (LBEs) and stencils. Here, we will present a derivation of LBEs from the discrete-velocity Boltzmann equation (DVBE). By using the method of characteristics, high
Style APA, Harvard, Vancouver, ISO itp.
6

Wang, Liang, Xuhui Meng, Hao-Chi Wu, Tian-Hu Wang, and Gui Lu. "Discrete effect on single-node boundary schemes of lattice Bhatnagar–Gross–Krook model for convection-diffusion equations." International Journal of Modern Physics C 31, no. 01 (2019): 2050017. http://dx.doi.org/10.1142/s0129183120500175.

Pełny tekst źródła
Streszczenie:
The discrete effect on the boundary condition has been a fundamental topic for the lattice Boltzmann method (LBM) in simulating heat and mass transfer problems. In previous works based on the anti-bounce-back (ABB) boundary condition for convection-diffusion equations (CDEs), it is indicated that the discrete effect cannot be commonly removed in the Bhatnagar–Gross–Krook (BGK) model except for a special value of relaxation time. Targeting this point in this paper, we still proceed within the framework of BGK model for two-dimensional CDEs, and analyze the discrete effect on a non-halfway singl
Style APA, Harvard, Vancouver, ISO itp.
7

Mieussens, Luc. "Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries." Journal of Computational Physics 162, no. 2 (2000): 429–66. http://dx.doi.org/10.1006/jcph.2000.6548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Aristov, V. V., O. V. Ilyin, and O. A. Rogozin. "Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods." Journal of Computational Science 40 (February 2020): 101064. http://dx.doi.org/10.1016/j.jocs.2019.101064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Buet, C. "A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics." Transport Theory and Statistical Physics 25, no. 1 (1996): 33–60. http://dx.doi.org/10.1080/00411459608204829.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wu, Junlin, Zhihui Li, Aoping Peng, and Xinyu Jiang. "Numerical Simulations of Unsteady Flows From Rarefied Transition to Continuum Using Gas-Kinetic Unified Algorithm." Advances in Applied Mathematics and Mechanics 7, no. 5 (2015): 569–96. http://dx.doi.org/10.4208/aamm.2014.m523.

Pełny tekst źródła
Streszczenie:
AbstractNumerical simulations of unsteady gas flows are studied on the basis of Gas-Kinetic Unified Algorithm (GKUA) from rarefied transition to continuum flow regimes. Several typical examples are adopted. An unsteady flow solver is developed by solving the Boltzmann model equations, including the Shakhov model and the Rykov model etc. The Rykov kinetic equation involving the effect of rotational energy can be transformed into two kinetic governing equations with inelastic and elastic collisions by integrating the molecular velocity distribution function with the weight factor on the energy o
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!