Artykuły w czasopismach na temat „Dissociation modeling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dissociation modeling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kulla, Patricia, Tina Braun, Tim Reichenberger, and Joachim Kruse. "Researching Shame, Dissociation, and Their Relationship Using Latent Change Modeling." Journal of Experimental Psychopathology 14, no. 2 (2023): 204380872311627. http://dx.doi.org/10.1177/20438087231162756.
Pełny tekst źródłaBellezza, Francis S. "Modeling Guessing." Zeitschrift für Psychologie / Journal of Psychology 217, no. 3 (2009): 125–35. http://dx.doi.org/10.1027/0044-3409.217.3.125.
Pełny tekst źródłaZaporozhets, E. P., and N. A. Shostak. "Mathematical modeling of some features of gas hydrates dissociation." Proceedings of the Voronezh State University of Engineering Technologies 80, no. 2 (2018): 313–22. http://dx.doi.org/10.20914/2310-1202-2018-2-313-322.
Pełny tekst źródłaHueber, Amandine, Yves Gimbert, Geoffrey Langevin, et al. "Identification of bacterial lipo-amino acids: origin of regenerated fatty acid carboxylate from dissociation of lipo-glutamate anion." Amino Acids 54, no. 2 (2022): 241–50. http://dx.doi.org/10.1007/s00726-021-03109-1.
Pełny tekst źródłaLiu, Zhiying, Qianghui Xu, Junyu Yang, and Lin Shi. "Pore-Scale Modeling of Methane Hydrate Dissociation Using a Multiphase Micro-Continuum Framework." Energies 16, no. 22 (2023): 7599. http://dx.doi.org/10.3390/en16227599.
Pełny tekst źródłaSchafer, Lothar, A. A. Ischenko, Yu A. Zhabanov, A. A. Otlyotov, and G. V. Girichev. "PHOTODISSOCIATION DYNAMICS OF SPATIALLY ALIGNED MOLECULES BY TIME-RESOLVED ELECTRON DIFFRACTION." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, no. 3 (2017): 4. http://dx.doi.org/10.6060/tcct.2017603.5551.
Pełny tekst źródłaMusakaev, N. G., S. L. Borodin, and D. S. Belskikh. "MATHEMATICAL MODELING OF HEATED GAS DISSOCIATION PROCESS INTO THE RESERVOIR SATURATED WITH METHANE AND ITS HYDRATE." Oil and Gas Studies, no. 4 (August 30, 2018): 68–74. http://dx.doi.org/10.31660/0445-0108-2018-4-68-74.
Pełny tekst źródłaZiółkowski, Marcin, Anna Vikár, Maricris Lodriguito Mayes, Ákos Bencsura, György Lendvay, and George C. Schatz. "Modeling the electron-impact dissociation of methane." Journal of Chemical Physics 137, no. 22 (2012): 22A510. http://dx.doi.org/10.1063/1.4733706.
Pełny tekst źródłaRodgers, M. T., Kent M. Ervin, and P. B. Armentrout. "Statistical modeling of collision-induced dissociation thresholds." Journal of Chemical Physics 106, no. 11 (1997): 4499–508. http://dx.doi.org/10.1063/1.473494.
Pełny tekst źródłaBrübach, Lucas, Daniel Hodonj, Linus Biffar, and Peter Pfeifer. "Detailed Kinetic Modeling of CO2-Based Fischer–Tropsch Synthesis." Catalysts 12, no. 6 (2022): 630. http://dx.doi.org/10.3390/catal12060630.
Pełny tekst źródłaMuntean, Felician, Lars Heumann, and P. B. Armentrout. "Modeling kinetic shifts in threshold collision-induced dissociation. Case study: Dichlorobenzene cation dissociation." Journal of Chemical Physics 116, no. 13 (2002): 5593–602. http://dx.doi.org/10.1063/1.1458247.
Pełny tekst źródłaArmentrout, P. B. "Statistical modeling of sequential collision-induced dissociation thresholds." Journal of Chemical Physics 126, no. 23 (2007): 234302. http://dx.doi.org/10.1063/1.2741550.
Pełny tekst źródłaRodgers, M. T., and P. B. Armentrout. "Statistical modeling of competitive threshold collision-induced dissociation." Journal of Chemical Physics 109, no. 5 (1998): 1787–800. http://dx.doi.org/10.1063/1.476754.
Pełny tekst źródłaBarbin, N., I. Tikina, and D. Terentyev. "Thermodynamic modeling of melt of the Bi-Pb-Sn-Cd system." Journal of Physics: Conference Series 2057, no. 1 (2021): 012104. http://dx.doi.org/10.1088/1742-6596/2057/1/012104.
Pełny tekst źródłaNaidis, G. V., and N. Yu Babaeva. "Low-pressure CO2 discharges: 1D modeling." Physics of Plasmas 30, no. 1 (2023): 013506. http://dx.doi.org/10.1063/5.0130672.
Pełny tekst źródłaYakin, Khusnul, Sidikrubadi Pramudito, and Kiagus Dahlan. "Perhitungan Energi Disosiasi Gugus Fungsi OH- dan PO43- Hidroksiapatit dengan Pemodelan Spektroskopi Inframerah Berbasis Particle Swarm Optimization (PSO)." INDONESIAN JOURNAL OF APPLIED PHYSICS 3, no. 01 (2016): 86. http://dx.doi.org/10.13057/ijap.v3i01.1236.
Pełny tekst źródłaMurakami, Tatsuhiro, Hinami Ueno, Yuya Kikuma, and Toshiyuki Takayanagi. "Nuclear Quantum Effects in the Ionic Dissociation Dynamics of HCl on the Water Ice Cluster." Molecules 30, no. 3 (2025): 442. https://doi.org/10.3390/molecules30030442.
Pełny tekst źródłaNing, Zi-Jie, Hong-Feng Lu, Shao-Fei Zheng, Dong-Hui Xing, Xian Li, and Lei Liu. "Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates." Energies 16, no. 20 (2023): 7184. http://dx.doi.org/10.3390/en16207184.
Pełny tekst źródłaSholihah, Mar’atus, and Wu-Yang Sean. "Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach." Molecules 26, no. 16 (2021): 5021. http://dx.doi.org/10.3390/molecules26165021.
Pełny tekst źródłaLin, Yu-Jeng, Nazir Hossain, and Chau-Chyun Chen. "Modeling dissociation of ionic liquids with electrolyte NRTL model." Journal of Molecular Liquids 329 (May 2021): 115524. http://dx.doi.org/10.1016/j.molliq.2021.115524.
Pełny tekst źródłaBoyd, Iain D., Graham V. Candler, and Deborah A. Levin. "Dissociation modeling in low density hypersonic flows of air." Physics of Fluids 7, no. 7 (1995): 1757–63. http://dx.doi.org/10.1063/1.868490.
Pełny tekst źródłaRoostaie, M., and Y. Leonenko. "Analytical modeling of methane hydrate dissociation under thermal stimulation." Journal of Petroleum Science and Engineering 184 (January 2020): 106505. http://dx.doi.org/10.1016/j.petrol.2019.106505.
Pełny tekst źródłaPanter, Justin L., Adam L. Ballard, Amadeu K. Sum, E. Dendy Sloan, and Carolyn A. Koh. "Hydrate Plug Dissociation via Nitrogen Purge: Experiments and Modeling." Energy & Fuels 25, no. 6 (2011): 2572–78. http://dx.doi.org/10.1021/ef200196z.
Pełny tekst źródłaKolev, St, Ts Paunska, G. Trenchev, and A. Bogaerts. "Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge." Journal of Physics: Conference Series 1492 (April 2020): 012007. http://dx.doi.org/10.1088/1742-6596/1492/1/012007.
Pełny tekst źródłaGovorun, A. E., E. N. Esimbekova, and V. A. Kratasyuk. "NAD(P)H: FMN-oxidoreductase functioning under macromolecular crowding: in vitro modeling." Доклады Академии наук 486, no. 4 (2019): 500–503. http://dx.doi.org/10.31857/s0869-56524864500-503.
Pełny tekst źródłaBao, Junwei Lucas, Xin Zhang, and Donald G. Truhlar. "Barrierless association of CF2and dissociation of C2F4by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory." Proceedings of the National Academy of Sciences 113, no. 48 (2016): 13606–11. http://dx.doi.org/10.1073/pnas.1616208113.
Pełny tekst źródłaRamazanov, M., N. Bulgakova, L. Lobkovsky, E. Chuvilin, D. Davletshina, and N. Shakhova. "Dissociation kinetics of methane hydrate in frozen rocks at decreasing external pressure: mathematical and laboratory modeling." Doklady Rossijskoj akademii nauk. Nauki o Zemle 516, no. 2 (2024): 622–31. https://doi.org/10.31857/s2686739724060152.
Pełny tekst źródłaMuntean, Felician, and P. B. Armentrout. "Modeling Kinetic Shifts and Competition in Threshold Collision-Induced Dissociation. Case Study: n-Butylbenzene Cation Dissociation." Journal of Physical Chemistry A 107, no. 38 (2003): 7413–22. http://dx.doi.org/10.1021/jp035256g.
Pełny tekst źródłaWang, Da Yong, Xiao Jing Ma, and Juan Qiao. "Impact Factors of Natural Gas Hydrate Dissociation by Depressurization: A Review." Advanced Materials Research 868 (December 2013): 564–67. http://dx.doi.org/10.4028/www.scientific.net/amr.868.564.
Pełny tekst źródłaRaju, Rajesh K., Ashfaq A. Bengali, and Edward N. Brothers. "A unified set of experimental organometallic data used to evaluate modern theoretical methods." Dalton Transactions 45, no. 35 (2016): 13766–78. http://dx.doi.org/10.1039/c6dt02763f.
Pełny tekst źródłaМирочник, А. Г., Е. В. Федоренко та А. Ю. Белолипцев. "Люминесценция дитолуоилметаната дифторида бора. Образование J-агрегатов". Оптика и спектроскопия 130, № 2 (2022): 237. http://dx.doi.org/10.21883/os.2022.02.52006.1717-21.
Pełny tekst źródłaChuvilin, Davletshina, Ekimova, Bukhanov, Shakhova, and Semiletov. "Role of Warming in Destabilization of Intrapermafrost Gas Hydrates in the Arctic Shelf: Experimental Modeling." Geosciences 9, no. 10 (2019): 407. http://dx.doi.org/10.3390/geosciences9100407.
Pełny tekst źródłaChuvilin, Evgeny, Gennadiy Tipenko, Boris Bukhanov, Vladimir Istomin, and Dimitri Pissarenko. "Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost." Geosciences 12, no. 3 (2022): 115. http://dx.doi.org/10.3390/geosciences12030115.
Pełny tekst źródłaPaenurk, Eno, and Peter Chen. "Modeling Gas-Phase Unimolecular Dissociation for Bond Dissociation Energies: Comparison of Statistical Rate Models within RRKM Theory." Journal of Physical Chemistry A 125, no. 9 (2021): 1927–40. http://dx.doi.org/10.1021/acs.jpca.1c00183.
Pełny tekst źródłaJosyula, Eswar, William F. Bailey, and Casimir J. Suchyta. "Dissociation Modeling in Hypersonic Flows Using State-to-State Kinetics." Journal of Thermophysics and Heat Transfer 25, no. 1 (2011): 34–47. http://dx.doi.org/10.2514/1.49903.
Pełny tekst źródłaDicharry, Christophe, Pascal Gayet, Gérard Marion, Alain Graciaa, and Anatoliy N. Nesterov. "Modeling Heating Curve for Gas Hydrate Dissociation in Porous Media." Journal of Physical Chemistry B 109, no. 36 (2005): 17205–11. http://dx.doi.org/10.1021/jp0504975.
Pełny tekst źródłaAndrienko, Daniil A., and Iain D. Boyd. "High fidelity modeling of thermal relaxation and dissociation of oxygen." Physics of Fluids 27, no. 11 (2015): 116101. http://dx.doi.org/10.1063/1.4935241.
Pełny tekst źródłaOkada, Yoshiki, Kei Sunouchi, Shuji Kato, Hideo Tashiro, and Kazuo Takeuchi. "Modeling of Multifrequency Infrared Multiphoton Dissociation for Laser Isotope Separation." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 27, no. 2 (1994): 222–27. http://dx.doi.org/10.1252/jcej.27.222.
Pełny tekst źródłaGoel, Naval, Michael Wiggins, and Subhash Shah. "Analytical modeling of gas recovery from in situ hydrates dissociation." Journal of Petroleum Science and Engineering 29, no. 2 (2001): 115–27. http://dx.doi.org/10.1016/s0920-4105(01)00094-8.
Pełny tekst źródłaLee, Ming-Tsung, Aleksey Vishnyakov, and Alexander V. Neimark. "Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation." Journal of Chemical Theory and Computation 11, no. 9 (2015): 4395–403. http://dx.doi.org/10.1021/acs.jctc.5b00467.
Pełny tekst źródłaHashemi, Hamed, Saeedeh Babaee, Amir H. Mohammadi, Paramespri Naidoo, and Deresh Ramjugernath. "Experimental measurements and thermodynamic modeling of refrigerant hydrates dissociation conditions." Journal of Chemical Thermodynamics 80 (January 2015): 30–40. http://dx.doi.org/10.1016/j.jct.2014.08.007.
Pełny tekst źródłaMacheret, Sergey O., and Igor V. Adamovich. "Semiclassical modeling of state-specific dissociation rates in diatomic gases." Journal of Chemical Physics 113, no. 17 (2000): 7351–61. http://dx.doi.org/10.1063/1.1313386.
Pełny tekst źródłaGhiasi, Mohammad M., Younes Noorollahi, and Alireza Aslani. "CO2 hydrate: Modeling of incipient stability conditions and dissociation enthalpy." Petroleum Science and Technology 36, no. 4 (2018): 259–65. http://dx.doi.org/10.1080/10916466.2017.1402036.
Pełny tekst źródłaSolomko, V., M. Verstraete, A. Delcorte, B. J. Garrison, X. Gonze, and P. Bertrand. "Modeling the dissociation and ionization of a sputtered organic molecule." Applied Surface Science 252, no. 19 (2006): 6459–62. http://dx.doi.org/10.1016/j.apsusc.2006.02.075.
Pełny tekst źródłaNazridoust, Kambiz, and Goodarz Ahmadi. "Computational modeling of methane hydrate dissociation in a sandstone core." Chemical Engineering Science 62, no. 22 (2007): 6155–77. http://dx.doi.org/10.1016/j.ces.2007.06.038.
Pełny tekst źródłaLin, Jeen-Shang, Yongkoo Seol, and Jeong Hoon Choi. "Geomechanical modeling of hydrate-bearing sediments during dissociation under shear." International Journal for Numerical and Analytical Methods in Geomechanics 41, no. 14 (2017): 1523–38. http://dx.doi.org/10.1002/nag.2695.
Pełny tekst źródłaYassen, Ashraf, Erik Olofsen, Raymonda Romberg, Elise Sarton, Meindert Danhof, and Albert Dahan. "Mechanism-based Pharmacokinetic–Pharmacodynamic Modeling of the Antinociceptive Effect of Buprenorphine in Healthy Volunteers." Anesthesiology 104, no. 6 (2006): 1232–42. http://dx.doi.org/10.1097/00000542-200606000-00019.
Pełny tekst źródłaMirochnik A. G., Fedorenko E.V., and Beloliptsev A. Yu. "Luminescence of boron difluoride ditoluoylmethanate. Formation of J-aggregatess." Optics and Spectroscopy 132, no. 2 (2022): 236. http://dx.doi.org/10.21883/eos.2022.02.53212.1717-21.
Pełny tekst źródłaRuan, Xu Ke, Yong Chen Song, and Hai Feng Liang. "Modeling the Effect of Permeability on Methane Gas Production from Hydrates in Porous Media." Applied Mechanics and Materials 29-32 (August 2010): 1762–67. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1762.
Pełny tekst źródłaAbdullah, Nashwan, Bohdan Kutnyi, Maryna Leshchenko, and Liubov Shumska. "Decomposition of Hydrates under the Action of Ultrahigh-Frequency Radiation." International Journal of Engineering & Technology 7, no. 4.8 (2018): 7–16. http://dx.doi.org/10.14419/ijet.v7i4.8.27206.
Pełny tekst źródła