Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Divisible group.

Artykuły w czasopismach na temat „Divisible group”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Divisible group”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Sharma, Jyoti, Jagdish Prasad, and D. K. Ghosh. "Characterization of Group Divisible Designs." Mathematical Journal of Interdisciplinary Sciences 4, no. 2 (2016): 161–75. http://dx.doi.org/10.15415/mjis.2016.42014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Midha, Chand K., and Aloke Dey. "Cyclic Group Divisible Designs." Calcutta Statistical Association Bulletin 45, no. 3-4 (1995): 253–58. http://dx.doi.org/10.1177/0008068319950311.

Pełny tekst źródła
Streszczenie:
New cyclic solutions of several group divisible incomplete block designs arc presented, A new group divisible desian is reported whose solution is also cyclic. We also present non-isomorphic solutions of several group divisible designs listed in the catalogue of Clatworthy (1973).
Style APA, Harvard, Vancouver, ISO itp.
3

Rahilly, Alan. "Maximal arcs and group divisible designs." Bulletin of the Australian Mathematical Society 41, no. 2 (1990): 223–29. http://dx.doi.org/10.1017/s0004972700018037.

Pełny tekst źródła
Streszczenie:
The existence of maximal arcs of a certain type in symmetric designs is shown to yield semiregular group divisible designs whose duals are also semiregular group divisible. Two infinite families of such group divisible designs are constructed. The group divisible designs in these families are, in general, not symmetric.
Style APA, Harvard, Vancouver, ISO itp.
4

Rahilly, Alan. "Semiregular group divisible designs with dual properties." Bulletin of the Australian Mathematical Society 45, no. 1 (1992): 61–69. http://dx.doi.org/10.1017/s0004972700037011.

Pełny tekst źródła
Streszczenie:
A construction method for group divisible designs is employed to construct (i) infinitely many non-symmetric semiregular group divisible designs whose duals are semiregular group divisible designs, and (ii) infinitely many transversal designs whose duals are group divisible 3-associate designs. A construction method for affine α−resolvable balanced incomplete block designs is also given and illustrated.
Style APA, Harvard, Vancouver, ISO itp.
5

Mukerjee, Rahul, and Sanpei Kageyama. "Robustness group divisible designs." Communications in Statistics - Theory and Methods 19, no. 9 (1990): 3189–203. http://dx.doi.org/10.1080/03610929008830375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Oort, Frans. "Finite Group Schemes and $p$-Divisible Groups." Notices of the International Congress of Chinese Mathematicians 8, no. 1 (2020): 55–78. http://dx.doi.org/10.4310/iccm.2020.v8.n1.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tausk, Daniel V. "A Locally Compact Non Divisible Abelian Group Whose Character Group Is Torsion Free and Divisible." Canadian Mathematical Bulletin 56, no. 1 (2013): 213–17. http://dx.doi.org/10.4153/cmb-2011-146-4.

Pełny tekst źródła
Streszczenie:
AbstractIt was claimed by Halmos in 1944 that if G is a Hausdorff locally compact topological abelian group and if the character group of G is torsion free, then G is divisible. We prove that such a claim is false by presenting a family of counterexamples. While other counterexamples are known, we also present a family of stronger counterexamples, showing that even if one assumes that the character group of G is both torsion free and divisible, it does not follow that G is divisible.
Style APA, Harvard, Vancouver, ISO itp.
8

KISHI, YASUHIRO. "ON THE IDEAL CLASS GROUP OF CERTAIN QUADRATIC FIELDS." Glasgow Mathematical Journal 52, no. 3 (2010): 575–81. http://dx.doi.org/10.1017/s0017089510000431.

Pełny tekst źródła
Streszczenie:
AbstractLet n(≥ 3) be an odd integer. Let k:= $\Q(\sqrt{4-3^n})\)$ be the imaginary quadratic field and k′:= $\Q(\sqrt{-3(4-3^n)})\)$ the real quadratic field. In this paper, we prove that the class number of k is divisible by 3 unconditionally, and the class number of k′ is divisible by 3 if n(≥ 9) is divisible by 3. Moreover, we prove that the 3-rank of the ideal class group of k is at least 2 if n(≥ 9) is divisible by 3.
Style APA, Harvard, Vancouver, ISO itp.
9

Singh, Ksh Surjit, and K. K. Singh Meitei. "Semi-Regular Group Divisible Designs For Smaller Block Size." International Journal of Innovative Research in Computer Science & Technology 6, no. 1 (2018): 6–8. http://dx.doi.org/10.21276/ijircst.2018.6.1.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Duan, Xiaoping, and Sanpei Kageyama. "CONSTRUCTIONS OF GROUP DIVISIBLE DESIGNS." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 25, no. 2 (1995): 121–28. http://dx.doi.org/10.14490/jjss1995.25.121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

O'Keefe, Christine M., and Alan Rahilly. "Spreads and group divisible designs." Designs, Codes and Cryptography 3, no. 3 (1993): 229–35. http://dx.doi.org/10.1007/bf01388484.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Rodger, C. A., and Julie Rogers. "Generalizing Clatworthy group divisible designs." Journal of Statistical Planning and Inference 140, no. 9 (2010): 2442–47. http://dx.doi.org/10.1016/j.jspi.2010.02.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Heinrich, Katherine, and Jianxing Yin. "On group divisible covering designs." Discrete Mathematics 202, no. 1-3 (1999): 101–12. http://dx.doi.org/10.1016/s0012-365x(98)00362-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Thannippara, Alex, Sreejith V, S. C. Bagui, and D. K. Ghosh. "A New Method of Construction of E-optimal Generalized Group Divisible Designs (GGDD)." Journal of Scientific Research 1, no. 1 (2008): 38–42. http://dx.doi.org/10.3329/jsr.v1i1.1697.

Pełny tekst źródła
Streszczenie:
In this article, we develop a new method of construction of E-optimal generalized group divisible designs through group testing designs. Keywords: Balanced Incomplete Block Design (BIBD); Group Divisible (GD); Generalized Group Divisible Design (GDD); E-optimality. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1697
Style APA, Harvard, Vancouver, ISO itp.
15

Pabhapote, Nittiya, and Narong Punnim. "Group Divisible Designs with Two Associate Classes and." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/148580.

Pełny tekst źródła
Streszczenie:
The original classiffcation of PBIBDs defined group divisible designs GDD() with . In this paper, we prove that the necessary conditions are suffcient for the existence of the group divisible designs with two groups of unequal sizes and block size three with .
Style APA, Harvard, Vancouver, ISO itp.
16

Arasu, K. T., and Alexander Pott. "Some construction of group divisible designs with singer groups." Discrete Mathematics 97, no. 1-3 (1991): 39–45. http://dx.doi.org/10.1016/0012-365x(91)90419-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

LIU, CHIA-HSIN, and D. S. PASSMAN. "MULTIPLICATIVE JORDAN DECOMPOSITION IN GROUP RINGS OF 2, 3-GROUPS." Journal of Algebra and Its Applications 09, no. 03 (2010): 483–92. http://dx.doi.org/10.1142/s0219498810004026.

Pełny tekst źródła
Streszczenie:
In this paper, we essentially finish the classification of those finite 2, 3-groups G having integral group rings with the multiplicative Jordan decomposition (MJD) property. If G is abelian or a Hamiltonian 2-group, then it is clear that ℤ[G] satisfies MJD. Thus, we need only consider the nonabelian case. Recall that the 2-groups with MJD were completely determined by Hales, Passi and Wilson, while the corresponding 3-groups were almost completely determined by the present authors. Thus, we are concerned here, for the most part, with groups whose order is divisible by 6. As it turns out, ther
Style APA, Harvard, Vancouver, ISO itp.
18

Wehrfritz, B. A. F. "The divisible radical of a group." Central European Journal of Mathematics 7, no. 3 (2009): 387–94. http://dx.doi.org/10.2478/s11533-009-0022-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Saurabh, Shyam, and Kishore Sinha. "A new regular group divisible design." Examples and Counterexamples 1 (November 2021): 100029. http://dx.doi.org/10.1016/j.exco.2021.100029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Sastry, D. V. S. "A series of group divisible designs." Communications in Statistics - Theory and Methods 20, no. 5-6 (1991): 1677–82. http://dx.doi.org/10.1080/03610929108830591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kageyama, Sanpei. "A construction of group divisible designs." Journal of Statistical Planning and Inference 12 (January 1985): 123–25. http://dx.doi.org/10.1016/0378-3758(85)90060-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Arasu, K. T., and Susan Harris. "New constructions of group divisible designs." Journal of Statistical Planning and Inference 52, no. 2 (1996): 241–53. http://dx.doi.org/10.1016/0378-3758(95)00111-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Giese, Sabine, and Ralph-Hardo Schulz. "Divisible designs with dual translation group." Designs, Codes and Cryptography 43, no. 1 (2007): 41–45. http://dx.doi.org/10.1007/s10623-007-9056-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Fomin, A. A. "To Quotient Divisible Group Theory. I." Journal of Mathematical Sciences 197, no. 5 (2014): 688–97. http://dx.doi.org/10.1007/s10958-014-1752-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Duan, Xiaoping, and Sanpei Kageyama. "Constructions of nested group divisible designs." Statistics & Probability Letters 18, no. 1 (1993): 41–48. http://dx.doi.org/10.1016/0167-7152(93)90097-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Sinha, Kishore, and Sanpei Kageyama. "Composite construction of group divisible designs." Annals of the Institute of Statistical Mathematics 41, no. 2 (1989): 409–14. http://dx.doi.org/10.1007/bf00049405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Danchev, Peter. "Isomorphism Characterization of Divisible Groups in Modular Abelian Group Rings." gmj 16, no. 1 (2009): 49–54. http://dx.doi.org/10.1515/gmj.2009.49.

Pełny tekst źródła
Streszczenie:
Abstract Suppose G is an abelian group with a p-subgroup H and R is a commutative unitary ring of prime characteristic p with trivial nil-radical. We give a complete description up to isomorphism of the maximal divisible subgroups of 1 + I(RG;H) and (1 + I(RG;H))=H, respectively, where I(RG;H) denotes the relative augmentation ideal of the group algebra RG with respect to H. This paper terminates a series of works by the author on the topic, first of which are [Danchev, Rad. Mat. 13: 23–32, 2004] and [Danchev, Bull. Georgian Acad. Sci. 174: 238–242, 2006].
Style APA, Harvard, Vancouver, ISO itp.
28

Srivastav, Sudesh K. "ON CONSTRUCTION OF GENERALIZED GROUP DIVISIBLE DESIGNS WITH TWO GROUPS." Communications in Statistics - Theory and Methods 31, no. 4 (2002): 639–47. http://dx.doi.org/10.1081/sta-120003139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Hurd, Spencer P., and Dinesh G. Sarvate. "Group divisible designs with block size four and two groups." Discrete Mathematics 308, no. 13 (2008): 2663–73. http://dx.doi.org/10.1016/j.disc.2005.02.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Henson, D., D. G. Sarvate, and S. P. Hurd. "Group divisible designs with three groups and block size four." Discrete Mathematics 307, no. 14 (2007): 1693–706. http://dx.doi.org/10.1016/j.disc.2006.09.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Sarti, Alessandra. "Group Actions, Cyclic Coverings and Families of K3-Surfaces." Canadian Mathematical Bulletin 49, no. 4 (2006): 592–608. http://dx.doi.org/10.4153/cmb-2006-055-0.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we describe six pencils of K3-surfaces which have large Picard number (ρ = 19, 20) and each contains precisely five special fibers: four have A-D-E singularities and one is non-reduced. In particular, we characterize these surfaces as cyclic coverings of some K3-surfaces described in a recent paper by Barth and the author. In many cases, using 3-divisible sets, resp., 2-divisible sets, of rational curves and lattice theory, we describe explicitly the Picard lattices.
Style APA, Harvard, Vancouver, ISO itp.
32

CHOUHAN, C. P. S. "Method of Construction of Group Divisible Designs." Journal of Ultra Scientist of Physical Sciences Section A 28, no. 7 (2016): 354–57. http://dx.doi.org/10.22147/jusps-a/280703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Miao, Ying, Sanpei Kageyama, and Xiaoping Duan. "FURTHER CONSTRUCTIONS OF NESTED GROUP DIVISIBLE DESIGNS." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 26, no. 2 (1996): 231–39. http://dx.doi.org/10.14490/jjss1995.26.231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wang, Haiyan, and Yanxun Chang. "Kite-group Divisible Designs of Type gtu1." Graphs and Combinatorics 22, no. 4 (2006): 545–71. http://dx.doi.org/10.1007/s00373-006-0681-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Tsarev, A. V. "Pseudorational rank of a quotient divisible group." Journal of Mathematical Sciences 144, no. 2 (2007): 4013–22. http://dx.doi.org/10.1007/s10958-007-0254-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Parihar, J. S., and R. Shrivastava. "Methods of construction of group divisible designs." Journal of Statistical Planning and Inference 18, no. 3 (1988): 399–404. http://dx.doi.org/10.1016/0378-3758(88)90116-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Fomin, A. A. "On the Quotient Divisible Group Theory. II." Journal of Mathematical Sciences 230, no. 3 (2018): 457–83. http://dx.doi.org/10.1007/s10958-018-3754-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Assaf, Ahmed M. "An application of modified group divisible designs." Journal of Combinatorial Theory, Series A 68, no. 1 (1994): 152–68. http://dx.doi.org/10.1016/0097-3165(94)90095-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Ji, Lijun. "Group divisible designs with large block sizes." Designs, Codes and Cryptography 86, no. 10 (2017): 2255–60. http://dx.doi.org/10.1007/s10623-017-0448-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Fickus, Matthew, and John Jasper. "Equiangular tight frames from group divisible designs." Designs, Codes and Cryptography 87, no. 7 (2018): 1673–97. http://dx.doi.org/10.1007/s10623-018-0569-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Larson, James R., Joseph G. Bihary, and Amanda C. Egan. "Motivation gains on divisible conjunctive group tasks." Group Processes & Intergroup Relations 21, no. 8 (2017): 1125–43. http://dx.doi.org/10.1177/1368430217702724.

Pełny tekst źródła
Streszczenie:
Two studies examined the effort that participants expended on a challenging physical persistence activity when that activity was a critical part of a divisible conjunctive task performed by two people working as a team compared to when it was structured as an individual task performed by one person working alone. It was found that participants put greater effort into that activity when they worked as part of a team task compared to when they worked alone—a motivation gain when working in groups. This gain occurred despite the absence of any apparent task-related ability differences among parti
Style APA, Harvard, Vancouver, ISO itp.
42

Brouwer, A. E., A. Schrijver, and H. Hanani. "Group divisible designs with block-size four." Discrete Mathematics 306, no. 10-11 (2006): 939–47. http://dx.doi.org/10.1016/j.disc.2006.03.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kharaghani, Hadi, and Sho Suda. "Linked systems of symmetric group divisible designs." Journal of Algebraic Combinatorics 47, no. 2 (2017): 319–43. http://dx.doi.org/10.1007/s10801-017-0777-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Tamura, Hiroki. "D-optimal designs and group divisible designs." Journal of Combinatorial Designs 14, no. 6 (2006): 451–62. http://dx.doi.org/10.1002/jcd.20103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Romanovskii, N. S. "SOME issues in the theory of models of divisible rigid groups." Herald of Omsk University 28, no. 5 (2023): 10–12. http://dx.doi.org/10.24147/1812-3996.2023.5.10-12.

Pełny tekst źródła
Streszczenie:
A brief review of some of the author's results on the theory of models of divisible rigid groups is given. A theorem is presented that describes algebraic closures of subsets in a divisible rigid group.
Style APA, Harvard, Vancouver, ISO itp.
46

Girma Tefera, Zebene, and Samuel Asefa Fufa. "GDDs with 4 Groups and Block Size 5." SINET: Ethiopian Journal of Science 46, no. 2 (2023): 146–53. http://dx.doi.org/10.4314/sinet.v46i2.3.

Pełny tekst źródła
Streszczenie:
This paper studies a special case of group divisible designs (GDDs) called 3-GDDs, which were defined by extending the definitions of a group divisible designs and a t-design. In particular, the paper looks at a 3-GDD(n, 4, 5; μ1, μ2) with 4 groups and block size 5. Necessary conditions for the existence given.
Style APA, Harvard, Vancouver, ISO itp.
47

Hossein, Sahleh, and Akbar Alijani Ali. "Extensions of Locally Compact Abelian, Torsion-Free Groups by Compact Torsion Abelian Groups." British Journal of Mathematics & Computer Science 22, no. 4 (2017): 1–5. https://doi.org/10.9734/BJMCS/2017/32966.

Pełny tekst źródła
Streszczenie:
Let <em>X</em> be a compact torsion abelian group. In this paper, we show that an extension of <em>F<sub>p</sub></em> by <em>X</em> splits where <em>F<sub>p</sub></em> is the p-adic number group and p a prime number. Also, we show that an extension of a torsion-free, non-divisible LCA group by <em>X</em> is not split.
Style APA, Harvard, Vancouver, ISO itp.
48

HARASHITA, SHUSHI. "ON -DIVISIBLE GROUPS WITH SATURATED NEWTON POLYGONS." Nagoya Mathematical Journal 232 (June 7, 2017): 96–120. http://dx.doi.org/10.1017/nmj.2017.22.

Pełny tekst źródła
Streszczenie:
This paper concerns the classification of isogeny classes of$p$-divisible groups with saturated Newton polygons. Let$S$be a normal Noetherian scheme in positive characteristic$p$with a prime Weil divisor$D$. Let${\mathcal{X}}$be a$p$-divisible group over$S$whose geometric fibers over$S\setminus D$(resp. over$D$) have the same Newton polygon. Assume that the Newton polygon of${\mathcal{X}}_{D}$is saturated in that of${\mathcal{X}}_{S\setminus D}$. Our main result (Corollary 1.1) says that${\mathcal{X}}$is isogenous to a$p$-divisible group over$S$whose geometric fibers are all minimal. As an app
Style APA, Harvard, Vancouver, ISO itp.
49

SRIVASTAV, SUDESH K., and ARTI SHANKAR. "Some Methods of Constructing Generalized Group Divisible Designs with Two Groups." Communications in Statistics - Theory and Methods 34, no. 1 (2005): 127–33. http://dx.doi.org/10.1081/sta-200045854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zhu, Mingzhi, and Gennian Ge. "Mixed group divisible designs with three groups and block size 4." Discrete Mathematics 310, no. 17-18 (2010): 2323–26. http://dx.doi.org/10.1016/j.disc.2010.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!