Gotowa bibliografia na temat „DNA Effect of radiation on”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DNA Effect of radiation on”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DNA Effect of radiation on"
Jalal, Nasir, Saba Haq, Namrah Anwar, Saadiya Nazeer i Umar Saeed. "Radiation induced bystander effect and DNA damage". Journal of Cancer Research and Therapeutics 10, nr 4 (2014): 819. http://dx.doi.org/10.4103/0973-1482.144587.
Pełny tekst źródłaKalinich, John F., George N. Catravas i Stephen L. Snyder. "The Effect of γ Radiation on DNA Methylation". Radiation Research 117, nr 2 (luty 1989): 185. http://dx.doi.org/10.2307/3577319.
Pełny tekst źródłaRita, Ghosh, i Hansda Surajit. "Targeted and non-targeted effects of radiation in mammalian cells: An overview". Archives of Biotechnology and Biomedicine 5, nr 1 (12.04.2021): 013–19. http://dx.doi.org/10.29328/journal.abb.1001023.
Pełny tekst źródłaYokoya, A., N. Shikazono, K. Fujii, A. Urushibara, K. Akamatsu i R. Watanabe. "DNA damage induced by the direct effect of radiation". Radiation Physics and Chemistry 77, nr 10-12 (październik 2008): 1280–85. http://dx.doi.org/10.1016/j.radphyschem.2008.05.021.
Pełny tekst źródłaGeorgakilas, Alexandros G. "Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation". Radiation 1, nr 1 (22.10.2020): 1–4. http://dx.doi.org/10.3390/radiation1010001.
Pełny tekst źródłaTuraeva, N. N., S. Schroeder i B. L. Oksengendler. "Effect of Anderson Localization on Auger Destruction of DNA". ISRN Biophysics 2012 (5.12.2012): 1–3. http://dx.doi.org/10.5402/2012/972085.
Pełny tekst źródłaGaneva, Roumiana L., i Lyuben M. Tzvetkov. "Effect of Cisplatin Alone and in Combination with γ-Radiation on the Initiation of DNA Synthesis in Friend Leukemia Cells". Zeitschrift für Naturforschung C 52, nr 5-6 (1.06.1997): 405–7. http://dx.doi.org/10.1515/znc-1997-5-620.
Pełny tekst źródłaGreubel, Christoph, Volker Hable, Guido A. Drexler, Andreas Hauptner, Steffen Dietzel, Hilmar Strickfaden, Iris Baur i in. "Competition effect in DNA damage response". Radiation and Environmental Biophysics 47, nr 4 (23.07.2008): 423–29. http://dx.doi.org/10.1007/s00411-008-0182-z.
Pełny tekst źródłaBangruwa, Neeraj, Manish Srivastava i Debabrata Mishra. "Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA". Magnetochemistry 7, nr 7 (8.07.2021): 98. http://dx.doi.org/10.3390/magnetochemistry7070098.
Pełny tekst źródłarezaiekahkhaie, sakine, i Khadije Rezaie Keikhaie. "The Role of Ionizing Radiation in Cellular Signaling Pathways, Mutagenesis, and Carcinogenesis". International Journal of Basic Science in Medicine 3, nr 4 (13.01.2019): 147–53. http://dx.doi.org/10.15171/ijbsm.2018.26.
Pełny tekst źródłaRozprawy doktorskie na temat "DNA Effect of radiation on"
MacPhail, Susan Helen. "Effect of intercellular contact on radiation-induced DNA damage". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27986.
Pełny tekst źródłaMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Bajinskis, Ainars. "Studies of DNA repair strategies in response to complex DNA damages". Doctoral thesis, Stockholms universitet, Institutionen för genetik, mikrobiologi och toxikologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-72472.
Pełny tekst źródłaAt the time of doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
Morabito, Brian Joseph. "Quantitating radiation induced DNA breaks by capillary electrophoresis". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16339.
Pełny tekst źródłaBraddock, M. "Effects of radiation on DNA". Thesis, University of Salford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356177.
Pełny tekst źródłaVerma, Meera Mary. "On the effect of UV-irradiation on DNA replication in Escherichia coli". Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phv522.pdf.
Pełny tekst źródłaByrne, Shaun Edward. "An investigation into the processing of ionising radiation induced clustered DNA damage sites using mammalian cell extracts". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670082.
Pełny tekst źródłaRoos, Wynand Paul. "The influence of DNA damage, DNA repair and chromatin structure on radiosensitivity". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52540.
Pełny tekst źródłaENGLISH ABSTRACT: The factors which control radiosensitivity are of vital importance for the understanding of cell inactivation and for cancer therapy. Cell cycle blocks, total induced DNA damage, DNA repair, apoptosis and chromatin structure are likely to playa role in the responses leading to cell death. I have examined aspects of irradiation-induced G2/M blocks in DNA damage and repair. In HT29, L132 and ATs4 cells the total amount of induced DNA damage by isodoses of 4.5 Gy, 5 Gy and 2 Gy was found to be 14 %, 14 % and 12 % respectively. Most of the DNA repair was completed before the G2/M maximum and only 3 % of DNA damage remains to be restored in the G2/M block. The radiosensitivity in eleven cell lines was found to range from SF2 of 0.02 to 0.61. By FADU assay the undamaged DNA at 5 Gy was found to range from 56% to 93%. The initial DNA damage and radiosensitivity were highly correlated (r2=0. 81). After 5 Gy irradiation and 12 hours repair two groups of cell lines emerged. The group 1 cell lines restored undamaged DNA to a level ranging from 94 % to 98 %. The group 2 cell lines restored the undamaged DNA to a level ranging from 77 % to 82 %. No correlation was seen between residual DNA damage remaining after 12 hours repair and radiosensitivity. In CHO-K1 cells chromatin condensation induced by Nocodazole was found to marginally increase the radiosensitivity as shown by the change of the mean inactivation dose (D) from 4.446 to 4.376 Gy. Nocodazole also increased the initial DNA damage, induced by 5 Gy, from 7 % to 13 %. In xrs1 cells these conditions increased the radiosensitivity from D of 1.209 to 0.7836 Gy and the initial DNA damage from 43 % to 57 %. Disruption of chromatin structure with a hypertonic medium was found to increase radiosensitivity in CHO-K1 cells from D of 4.446 to 3.092 Gy and the initial DNA damage from 7 % to 15 %. In xrs1 cells these conditions caused radiosensitivity to decrease from D of 1.209 to 1.609 Gy and the initial DNA damage from 43 % to 36 %. Repair inhibition by Wortmannin increased the radiosensitivity in CHO-K1 from a D of 5.914 Gy in DMSO controls to a D 3.043 Gy. In xrs1 cells repair inhibition had no effect on radiosensitivity. Significant inhibition of repair was seen in CHO-K1 at 2 hours (p<0.0001) and at 20 hours (p=0.0095). No inhibition of repair was seen in xrs1 cells at 2 hours (p=0.6082) or 20 hours (p=0.6069). While DNA repair must be allocated to the post-irradiation period, the G2/M block seen in p53 mutants reaches a maximum only 12 hours post-irradiation when most of the repair is completed. As the G2/M block resolves and cells reenter cycle 28 hours after the G2 maximum it appears that repair processes cannot be the only reason for the G2IM cell cycle arrest. At low doses of irradiation initial DNA damage correlates with radiosensitivity. This suggests that the initial DNA damage is a determinant for radiosensitivity. Repair of DNA double-strand breaks by the non-homologous end joining (NHEJ) mechanism, identified by inhibition with Wortmannin, was shown to influence residual DNA damage and cell survival. Both the initial DNA damage and DNA repair were found to be influenced by chromatin structure. Chromatin structure was modulated by high salt and by Nocodazole, and has heen identified as a parameter which influences radiosensitivity.
AFRIKAANSE OPSOMMING: Die faktore wat betrokke is in die meganisme van stralings-sensitisering is van hoogs belang vir die begrip van sel inaktiveering en kanker terapie. Sel siklus blokke, totale geïnduseerde DNS skade, DNS herstel, apoptose en chromatien struktuur is moontlike rol vertolkers in die sellulêre response wat ly tot seldood. Ek het die aspekte van stralings-geïnduseerde G2/M blokke in DNS skade en DNS herstelondersoek. Die hoeveelheid geïnduseerde DNS skade, deur ooreenstemmende stralings-dosisse, in HT29, L132 en ATs4 selle is 14 %, 14 % en 12 %. Meeste van die DNS herstel is klaar voordat die G2/M maksimum beryk word en net 3 % DNS skade blyoor om herstel te word in die G2/M blok. Die stralings-sensitiwiteit in elf sel lyne varieer tussen 'n SF2 van 0.02 en 0.61. Deur die gebruik van die FADU metode is gevind dat die onbeskadigde DNS na 5 Gy bestraling varieer tussen 56 % en 93 %. Die totale geïnduseerde DNS skade en stralings-sensitiwiteit was hoogs gekorreleer (r2=0.81). Na 5 Gy bestraling en 12 ure herstel kan die sel lyne in twee groepe gegroepeer word. Die groep 1 sellyne herstel die onbeskadigde DNS terug na 'n vlak wat varieer tussen 94 % en 98 %. Die groep 2 sel lyne herstel die onbeskadigde DNS terug tot op 'n vlak wat varieer tussen 77 % en 82 %. Geen korrelasie is gesien tussen oorblywende DNS skade en stralings-sensitiwiteit na 12 ure herstel nie. In die CHO-K1 sel lyn, chromatien kompaksie geïnduseer deur Nocodazole, vererger die stralings- sensitiwiteit soos gesien deur die gemiddelde inaktiveerings dosis (D) wat verlaag het van 4.446 tot 4.376. Nocodazole het ook die totale DNS skade verhoog van 7 % tot 13 %. Onder dieselfde kondisies, in die xrs1 sel lyn, is 'n verergering van stralings-sensitiwiteit (D) gesien van 1.209 tot 0.7836 en verhoog ONS skade van 43 % tot 57 %. Die ontwrigting van die chromatien struktuur deur die gebruik van hipertoniese medium het die stralings-sensitiwiteit (D) vererger in CHO-K1 selle van 4.446 tot 3.092. Die totale ONS skade is verhoog van 7 % tot 15 %. Onder dieselfde kondisies, in die xrs1 sellyn, verbeter die stralings-sensitiwiteit (D) van 1.209 tot 1.609 en die totale ONS skade verminder van 43 % tot 36 %. ONS herstel inaktiveering in die teenwoordigheid van Wortmannin het die stralings-sensitiwiteit (D) in CHO-K1 selle vererger van 5.914 in DMSO verwysings kondisies tot 3.043. Die ONS herstel inaktiveering in xrs1 selle het geen uitwerking gehaat op stralingssensitiwiteit nie. Noemenswaardige inaktiveering van ONS herstel is gesien in CHO-K1 selle na 2 ure (p<0.0001) en na 20 ure (p=0.0095). Geen inaktiveering is gesien in xrs1 selle na 2 ure (p=0.6082) of na 20 ure (p=0.6069) nie. TerwylONS herstel moet plaasvind na die bestralings periode, beryk die G2/M blok in p53 gemuteerde selle sy maksimum 12 ure na bestraling terwyl meeste van die ONS herstel alreeds voltooi is. Aangesien die G2/M blok eers 28 ure later begin sirkuleer moet die G2/M blok nog 'n funksie vervul anders as ONS herstel. By lae dosisse van bestraling korreleer die totale geïnduseerde ONS skade met stralings-sensitiwiteit. Dit dui daarop dat die totale ONS skade 'n bepalende faktor moet wees in stralings-sensitiwiteit. Die herstel van ONS skade deur die nie-homoloë eindpunt samevoeging (NHES) meganisme, geïdentifiseer deur inaktiveering deur Wortmann in, het 'n invloed op oorblywende ONS skade en sellulêre oorlewing. Beide die totale ONS skade en ONS herstel was beïnvloed deur die chromatien struktuur. Chromatien struktuur was gemoduleer deur hoë sout konsentrasies en deur Nocodazole, en is geïdentifiseer as a belangrike parameter wat stralings-sensitiwiteit beïnvloed.
Starrs, Sharon Margaret. "Molecular mechanisms of DNA photodamage". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314222.
Pełny tekst źródłaSweeney, Marion Carol. "The effects of gamma radiation on DNA". Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/33943.
Pełny tekst źródłaElsy, David. "The effects of gamma-radiation on DNA". Thesis, University of Leicester, 1991. http://hdl.handle.net/2381/33664.
Pełny tekst źródłaKsiążki na temat "DNA Effect of radiation on"
NATO Advanced Research Workshop on the Early Effects of Radiation on DNA (1990 San Miniato, Italy). The early effects of radiation on DNA. Berlin: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaNATO Advanced Study Institute on Radiation Carcinogenesis and DNA Alterations (1984 Kerkyra, Greece). Radiation carcinogenesis and DNA alterations. New York: Plenum Press, 1986.
Znajdź pełny tekst źródłaBraddock, Martin. Effects of radiation on DNA. Salford: University of Salford, 1985.
Znajdź pełny tekst źródłaPrzybytniak, Grażyna. Rodniki powstające w DNA i jego nukleotydach pod wpływem promieniowania jonizującego. Warszawa: Instytut Chemii i Techniki Jądrowej, 2004.
Znajdź pełny tekst źródłaVilenchik, M. M. Nestabilʹnostʹ DNK i otdalennye vozdeĭstvii͡a︡ izlucheniĭ. Moskva: Ėnergoatomizdat, 1987.
Znajdź pełny tekst źródłaMarikki, Laiho, i SpringerLink (Online service), red. Molecular Determinants of Radiation Response. New York, NY: Springer Science+Business Media, LLC, 2011.
Znajdź pełny tekst źródłaFielden, E. M., i P. O’Neill, red. The Early Effects of Radiation on DNA. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6.
Pełny tekst źródłaSharpatyĭ, V. A. Radiat︠s︡ionnai︠a︡ khimii︠a︡ biopolimerov. Moskva: GEOS, 2008.
Znajdź pełny tekst źródłaUCLA SymposiaColloquium, Ionizing Radiation Damage to DNA, Molecular Aspects (1990 Lake Tahoe, Calif.). Ionizing radiation damage to DNA: Molecular aspects : proceedings of a Radiation Research Society-UCLA Symposia Colloquium held at Lake Tahoe, California, January 16-21, 1990. Redaktorzy Wallace Susan S, Painter Robert B, Radiation Research Society (U.S.) i University of California, Los Angeles. New York, N.Y: Wiley-Liss, 1990.
Znajdź pełny tekst źródłaKruszewski, Marcin. Podłoże odwrotnej krzyżowej oporności komórek L5178Y na promieniowanie jonizujące i nadtlenek wodoru. Warszawa: Instytut Chemii i Techniki Jądrowej, 1999., 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "DNA Effect of radiation on"
Kiefer, Jürgen. "Photo- and Radiation Chemistry of DNA". W Biological Radiation Effects, 104–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83769-2_6.
Pełny tekst źródłaSagstuen, E., E. O. Hole, W. H. Nelson i D. M. Close. "The Effect of Environment upon DNA Free Radicals". W The Early Effects of Radiation on DNA, 215–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_23.
Pełny tekst źródłaSwenberg, Charles E. "DNA and Radioprotection". W Terrestrial Space Radiation and Its Biological Effects, 675–95. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_47.
Pełny tekst źródłaBarendsen, G. W. "The Dependence of Dose-Effect Relations for Various Responses in Mammalian Cells on Radiation Quality, Implications for Mechanisms of Carcinogenesis". W Radiation Carcinogenesis and DNA Alterations, 583–91. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_49.
Pełny tekst źródłaEdwards, A. A., i D. C. Lloyd. "Chromosomal Damage in Human Lymphocytes: Effect of Radiation Quality". W The Early Effects of Radiation on DNA, 385–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_40.
Pełny tekst źródłavan der Schans, G. P. "Effect of Dose Modifiers on Radiation-Induced Cellular DNA Damage". W The Early Effects of Radiation on DNA, 347–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_36.
Pełny tekst źródłaFrankenberg, D. "Repair of DNA Damage and its Effect on RBE - An Experimental Approach". W The Early Effects of Radiation on DNA, 287–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_30.
Pełny tekst źródłaMcClellan, R. O., B. B. Boecker, F. F. Hahn, B. A. Muggenburg i R. G. Cuddihy. "Carcinogenic Effects of Inhaled Radionuclides". W Radiation Carcinogenesis and DNA Alterations, 147–54. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_8.
Pełny tekst źródłaField, S. B. "Non-Stochastic Effects: Compatibility with Present ICRP Recommendations". W Radiation Carcinogenesis and DNA Alterations, 539–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_45.
Pełny tekst źródłaOlive, P. L. "Discussion: Cellular DNA Strand Breakage". W The Early Effects of Radiation on DNA, 107–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_11.
Pełny tekst źródłaStreszczenia konferencji na temat "DNA Effect of radiation on"
Ram, Vineetha, VISHNU KAVUNGAL, Pradeep Chandran i Nampoori Vadakkedathu Parameswaran Narayana. "Silver Nanoparticles as Radiation Absorbers to Reduce the Effect of Mobile Phone Radiation on DNA". W International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.w3b.3.
Pełny tekst źródłaPrahardi, R., i Arundito Widikusumo. "Zero Dose". W Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.
Pełny tekst źródłaPrahardi, R., i Arundito Widikusumo. "Pentingnya Pendidikan dan Pelatihan Bagi Pekerja Radiasi". W Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.005.
Pełny tekst źródłaDicu, Tiberius, Ion D. Postescu, Vasile Foriş, Ioana Brie, Eva Fischer-Fodor, Valentin Cernea, Mircea Moldovan, Constantin Cosma, Madalin Bunoiu i Iosif Malaescu. "The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes". W PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153444.
Pełny tekst źródłaCao, En-Hua, Ju-jun Wang i Shu-min Xin. "Nonlinear biological effects of high-intensity visible laser radiation on DNA". W OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, redaktorzy Steven L. Jacques i Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147670.
Pełny tekst źródłaBera, Partha P., Henry F. Schaefer, George Maroulis i Theodore E. Simos. "Elementary Energetic Effects of Radiation Damage to DNA and RNA Subunits". W Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2826997.
Pełny tekst źródłaJanic, Branislava, Fangchao Liu, Kevin Bobbitt, Stephen Brown, Guangzhao Mao, Indrin J. Chetty, Benjamin Movsas i Ning Winston Wen. "Abstract 1376: Effect of gold nanoparticle on radiation induced DNA damage in MCF7 breast cancer cells". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1376.
Pełny tekst źródłaDan, Tu, Ajay Palagani, Tiziana DeAngelis, Sunny Han, Lance Liotta, Richard Pestell i Nicole Simone. "Abstract 3064: MicroRNA-21 enhances the effect of ionizing radiation via alteration of the DNA damage response". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3064.
Pełny tekst źródłaVasilyeva, Irina, O. Korytov, V. Bespalov, A. Semenov, G. Tochil'nikov, S. Ivanov i L. Korytova. "EFFECTS OF RADIATION EXPOSURE OF THE BLADDER ON EARLY CHANGES OF EXTRACELLULAR DNA AND OTHER INDICATORS OF PERIPHERAL BLOOD". W XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b37c7f8.86673968.
Pełny tekst źródłaVishnu, K., B. Nithyaja, M. Kailasnath i V. P. N. Nampoori. "Studies on Thermal Effects of Mobile Phone Radiation on DNA by Thermal Lens Technique". W International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.mpo.5.
Pełny tekst źródłaRaporty organizacyjne na temat "DNA Effect of radiation on"
Hosselet, S. The effect of radiation penetration on DNA single-strand breaks in rat skin explants. Office of Scientific and Technical Information (OSTI), styczeń 1989. http://dx.doi.org/10.2172/5561134.
Pełny tekst źródłaPeak, J. G., T. Ito, M. J. Peak i F. T. Robb. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/10172487.
Pełny tekst źródłaSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/7176057.
Pełny tekst źródłaSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/5018151.
Pełny tekst źródłaSevilla, M. D. Mechanisms for radiation damadge in DNA. Office of Scientific and Technical Information (OSTI), listopad 1994. http://dx.doi.org/10.2172/87116.
Pełny tekst źródłaWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada396847.
Pełny tekst źródłaWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2000. http://dx.doi.org/10.21236/ada384080.
Pełny tekst źródłaThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, listopad 2003. http://dx.doi.org/10.21236/ada423482.
Pełny tekst źródłaOsman, R. Molecular mechanisms in radiation damage to DNA. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5816640.
Pełny tekst źródłaThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada407373.
Pełny tekst źródła