Artykuły w czasopismach na temat „Dot1x”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dot1x”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Wenzheng, Zhiyuan Yu, Hongyu Wu, Lihe Chen, Qun Kong та Bruce C. Kone. "An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene". American Journal of Physiology-Renal Physiology 304, № 4 (2013): F367—F375. http://dx.doi.org/10.1152/ajprenal.00537.2011.
Pełny tekst źródłaZhang, Long, Lihe Chen, Chao Gao, et al. "Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2." Journal of the American Society of Nephrology 31, no. 2 (2019): 337–49. http://dx.doi.org/10.1681/asn.2019070739.
Pełny tekst źródłaWysocki, Robert, Ali Javaheri, Stéphane Allard, Fei Sha, Jacques Côté, and Stephen J. Kron. "Role of Dot1-Dependent Histone H3 Methylation in G1 and S Phase DNA Damage Checkpoint Functions of Rad9." Molecular and Cellular Biology 25, no. 19 (2005): 8430–43. http://dx.doi.org/10.1128/mcb.25.19.8430-8443.2005.
Pełny tekst źródłaWu, Aiwei, Junhong Zhi, Tian Tian, et al. "DOT1L complex regulates transcriptional initiation in human erythroleukemic cells." Proceedings of the National Academy of Sciences 118, no. 27 (2021): e2106148118. http://dx.doi.org/10.1073/pnas.2106148118.
Pełny tekst źródłaSinger, Miriam S., Alon Kahana, Alexander J. Wolf, et al. "Identification of High-Copy Disruptors of Telomeric Silencing in Saccharomyces cerevisiae." Genetics 150, no. 2 (1998): 613–32. http://dx.doi.org/10.1093/genetics/150.2.613.
Pełny tekst źródłaKim, Wootae, Ranah Kim, Geunyeong Park, Jong-Wan Park, and Ja-Eun Kim. "Deficiency of H3K79 Histone Methyltransferase Dot1-like Protein (DOT1L) Inhibits Cell Proliferation." Journal of Biological Chemistry 287, no. 8 (2011): 5588–99. http://dx.doi.org/10.1074/jbc.m111.328138.
Pełny tekst źródłaKim, Wootae, Minji Choi, and Ja-Eun Kim. "The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle." Cell Cycle 13, no. 5 (2014): 726–38. http://dx.doi.org/10.4161/cc.28104.
Pełny tekst źródłaPuddu, Fabio, Magda Granata, Lisa Di Nola, et al. "Phosphorylation of the Budding Yeast 9-1-1 Complex Is Required for Dpb11 Function in the Full Activation of the UV-Induced DNA Damage Checkpoint." Molecular and Cellular Biology 28, no. 15 (2008): 4782–93. http://dx.doi.org/10.1128/mcb.00330-08.
Pełny tekst źródłaWood, Adam, Jessica Schneider, and Ali Shilatifard. "Cross-talking histones: implications for the regulation of gene expression and DNA repair." Biochemistry and Cell Biology 83, no. 4 (2005): 460–67. http://dx.doi.org/10.1139/o05-116.
Pełny tekst źródłaJo, Stephanie Y., Eric M. Granowicz, Ivan Maillard, Dafydd Thomas, and Jay L. Hess. "Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation." Blood 117, no. 18 (2011): 4759–68. http://dx.doi.org/10.1182/blood-2010-12-327668.
Pełny tekst źródłaMorello, Giulia, Patrizia Porazzi, Enrico Moro, et al. "Zebrafish Ortholog of Human DOT1L Regulates Primitive and Transient Definitive Hematopoiesis and Controls hoxa9 and meis1 Expression." Blood 120, no. 21 (2012): 849. http://dx.doi.org/10.1182/blood.v120.21.849.849.
Pełny tekst źródłaGrigsby, Sierrah M., Ann Friedman, Jennifer Chase, et al. "Elucidating the Importance of DOT1L Recruitment in MLL-AF9 Leukemia and Hematopoiesis." Cancers 13, no. 4 (2021): 642. http://dx.doi.org/10.3390/cancers13040642.
Pełny tekst źródłaCao, Kaixiang, Michal Ugarenko, Patrick A. Ozark, et al. "DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation." Proceedings of the National Academy of Sciences 117, no. 44 (2020): 27365–73. http://dx.doi.org/10.1073/pnas.2001075117.
Pełny tekst źródłaMarcos-Villar, Laura, Estanislao Nistal-Villan, Noelia Zamarreño, Urtzi Garaigorta, Pablo Gastaminza та Amelia Nieto. "Interferon-β Stimulation Elicited by the Influenza Virus Is Regulated by the Histone Methylase Dot1L through the RIG-I-TRIM25 Signaling Axis". Cells 9, № 3 (2020): 732. http://dx.doi.org/10.3390/cells9030732.
Pełny tekst źródłaJo, Stephanie Y., Eric M. Granowicz, and Jay L. Hess. "Assessment of DOT1L as a Therapeutic Target In Acute Leukemia." Blood 116, no. 21 (2010): 3291. http://dx.doi.org/10.1182/blood.v116.21.3291.3291.
Pełny tekst źródłaWan, Shanshan, Yiwen Zhou, Qiong Huang, and Yanning Yang. "Dot1l Aggravates Keratitis Induced by Herpes Simplex Virus Type 1 in Mice via p38 MAPK-Mediated Oxidative Stress." Oxidative Medicine and Cellular Longevity 2021 (February 15, 2021): 1–14. http://dx.doi.org/10.1155/2021/6612689.
Pełny tekst źródłaMalcom, Carrie A., Joanna Piasecka-Srader, Nehemiah S. Alvarez, and Patrick E. Fields. "Identifying the Molecular Mechanisms By Which Disruptor of Telomere Silencing 1-like (DOT1L), a Histone 3, Lysine 79 (H3K79) Methyltransferase, Regulates Mammalian Hematopoiesis." Blood 128, no. 22 (2016): 2654. http://dx.doi.org/10.1182/blood.v128.22.2654.2654.
Pełny tekst źródłaBernt, Kathrin M., Nan Zhu, Joerg Faber, et al. "Demonstration of a Role for Dot1l In MLL-Rearranged Leukemia Using a Conditional Loss of Function Model." Blood 116, no. 21 (2010): 62. http://dx.doi.org/10.1182/blood.v116.21.62.62.
Pełny tekst źródłaChen, Chun-Wei, Lu Yang, Xi Wang, et al. "High-Density CRISPR Scan Identifies Functional Regions of DOT1L That Mediate Therapeutic Response in MLL-r Leukemia." Blood 132, Supplement 1 (2018): 179. http://dx.doi.org/10.1182/blood-2018-179.
Pełny tekst źródłaNguyen, Anh Tram, Olena Taranova, Jin He, and Yi Zhang. "DOT1L, the H3K79 methyltransferase, is required for MLL-AF9–mediated leukemogenesis." Blood 117, no. 25 (2011): 6912–22. http://dx.doi.org/10.1182/blood-2011-02-334359.
Pełny tekst źródłaSong, Xiaosheng, Liuliu Yang, Mingzhu Wang, et al. "A higher-order configuration of the heterodimeric DOT1L–AF10 coiled-coil domains potentiates their leukemogenenic activity." Proceedings of the National Academy of Sciences 116, no. 40 (2019): 19917–23. http://dx.doi.org/10.1073/pnas.1904672116.
Pełny tekst źródłaRiedel, Simone, Kathrin M. Bernt, Jessica Haladyna, et al. "Targeting Meningeoma-1 Driven AML through Epigenetic Modulation of the Cell of Origin." Blood 124, no. 21 (2014): 838. http://dx.doi.org/10.1182/blood.v124.21.838.838.
Pełny tekst źródłaYi, Joanna S., Alex Federation, Jun Qi, et al. "Structure-Guided Design of DOT1L Methyltransferase Inhibitors By a Novel, Label Free Assay Platform." Blood 124, no. 21 (2014): 4811. http://dx.doi.org/10.1182/blood.v124.21.4811.4811.
Pełny tekst źródłaSteger, David J., Martina I. Lefterova, Lei Ying, et al. "DOT1L/KMT4 Recruitment and H3K79 Methylation Are Ubiquitously Coupled with Gene Transcription in Mammalian Cells." Molecular and Cellular Biology 28, no. 8 (2008): 2825–39. http://dx.doi.org/10.1128/mcb.02076-07.
Pełny tekst źródłaHo, Li-Lun, Amit Sinha, Michael Verzi, Kathrin M. Bernt, Scott A. Armstrong, and Ramesh A. Shivdasani. "DOT1L-Mediated H3K79 Methylation in Chromatin Is Dispensable for Wnt Pathway-Specific and Other Intestinal Epithelial Functions." Molecular and Cellular Biology 33, no. 9 (2013): 1735–45. http://dx.doi.org/10.1128/mcb.01463-12.
Pełny tekst źródłaTian, Yuanyuan, Lijun Meng, Hongshuang Yu, et al. "Graft-Versus-Host Disease Impairs the Histone Methyltransferase Dot1l-Regulated Reconstitution of Plasmacytoid Dendritic Cells in Mice Undergoing Allo-HSCT." Blood 132, Supplement 1 (2018): 477. http://dx.doi.org/10.1182/blood-2018-99-118751.
Pełny tekst źródłaZhang, Xi, Qiaoling Zhou, Lihe Chen та ін. "Mineralocorticoid receptor antagonizes Dot1a-Af9 complex to increase αENaC transcription". American Journal of Physiology-Renal Physiology 305, № 10 (2013): F1436—F1444. http://dx.doi.org/10.1152/ajprenal.00202.2013.
Pełny tekst źródłaReisenauer, Mary Rose, Steven W. Wang, Yang Xia, and Wenzheng Zhang. "Dot1a contains three nuclear localization signals and regulates the epithelial Na+ channel (ENaC) at multiple levels." American Journal of Physiology-Renal Physiology 299, no. 1 (2010): F63—F76. http://dx.doi.org/10.1152/ajprenal.00105.2010.
Pełny tekst źródłaDeshpande, Anagha, Benson Chen, Parham Ramezani-Rad, et al. "Targeting MYC-Driven B-Cell Lymphoma By Inhibition of the Histone Methyltransferase DOT1L." Blood 132, Supplement 1 (2018): 2839. http://dx.doi.org/10.1182/blood-2018-99-115475.
Pełny tekst źródłaYu, Zhiyuan, Qun Kong, and Bruce C. Kone. "CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells." American Journal of Physiology-Renal Physiology 298, no. 3 (2010): F617—F624. http://dx.doi.org/10.1152/ajprenal.00636.2009.
Pełny tekst źródłaChen, Chun-Wei David, Christopher Delaney, Haiming Xu, et al. "An Epigenetic Regulator Screen Identifies Novel Targets That Sensitize MLL-Rearranged Leukemia to DOT1L Inhibition." Blood 128, no. 22 (2016): 571. http://dx.doi.org/10.1182/blood.v128.22.571.571.
Pełny tekst źródłaDavid Chen, Chun-Wei, Amit U. Sinha, Jun Qi, et al. "Genome-Wide RNAi Screen Identifies The Mechanistic Role For DOT1L In MLL-Rearranged Leukemia." Blood 122, no. 21 (2013): 598. http://dx.doi.org/10.1182/blood.v122.21.598.598.
Pełny tekst źródłaByun, Woong Sub, Gyu Ho Lee, Hyeung-geun Park, and Sang Kook Lee. "Inhibition of DOT1L by Half-Selenopsammaplin A Analogs Suppresses Tumor Growth and EMT-Mediated Metastasis in Triple-Negative Breast Cancer." Pharmaceuticals 14, no. 1 (2020): 18. http://dx.doi.org/10.3390/ph14010018.
Pełny tekst źródłaLiu, Chaohua, Qiaoyan Yang, Qian Zhu, et al. "CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis." Theranostics 10, no. 4 (2020): 1758–76. http://dx.doi.org/10.7150/thno.39013.
Pełny tekst źródłaPark, Geunyeong, Zihua Gong, Junjie Chen, and Ja-Eun Kim. "Characterization of the DOT1L Network: Implications of Diverse Roles for DOT1L." Protein Journal 29, no. 3 (2010): 213–23. http://dx.doi.org/10.1007/s10930-010-9242-8.
Pełny tekst źródłaNassa, Giovanni, Annamaria Salvati, Roberta Tarallo та ін. "Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells". Science Advances 5, № 2 (2019): eaav5590. http://dx.doi.org/10.1126/sciadv.aav5590.
Pełny tekst źródłaLonetti, Annalisa, Valentina Indio, Maria Antonella Laginestra, et al. "Inhibition of Methyltransferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of MLL-Rearrangements: A Novel Therapeutic Strategy for Pediatric AML." Cancers 12, no. 7 (2020): 1972. http://dx.doi.org/10.3390/cancers12071972.
Pełny tekst źródłaRiedel, Simone, Jessica Haladyna, Brett Stevens, et al. "Meningeoma-1 Cooperates with MLL and DOT1L to Induce Leukemia." Blood 126, no. 23 (2015): 2428. http://dx.doi.org/10.1182/blood.v126.23.2428.2428.
Pełny tekst źródłaChen, Liying, Aniruddha J. Deshpande, Deepti Banka, et al. "Abrogation of MLL-AF10 and CALM-AF10 Mediated Transformation Through Genetic Inactivation or Pharmacological Inhibition of the H3K79 Methyltransferase DOT1L." Blood 120, no. 21 (2012): 2384. http://dx.doi.org/10.1182/blood.v120.21.2384.2384.
Pełny tekst źródłaKwesi-Maliepaard, Eliza Mari, Muhammad Assad Aslam, Mir Farshid Alemdehy, et al. "The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8+T cells." Proceedings of the National Academy of Sciences 117, no. 34 (2020): 20706–16. http://dx.doi.org/10.1073/pnas.1920372117.
Pełny tekst źródłaRau, Rachel E., Benjamin A. Rodriguez, Min Luo, et al. "DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia." Blood 128, no. 7 (2016): 971–81. http://dx.doi.org/10.1182/blood-2015-11-684225.
Pełny tekst źródłaGeng, Jingping, Xiangli Guo, Lidan Wang, et al. "Intracellular Delivery of DNA and Protein by a Novel Cell-Permeable Peptide Derived from DOT1L." Biomolecules 10, no. 2 (2020): 217. http://dx.doi.org/10.3390/biom10020217.
Pełny tekst źródłaThomas, Tim. "DOT1L in prostate cancer." Nature Reviews Urology 17, no. 10 (2020): 544. http://dx.doi.org/10.1038/s41585-020-0374-0.
Pełny tekst źródłaKingsley, Molly C., Simone Stefanie Riedel, Hongbo Michael Xie, Sally P. Stabler, Taylor Pastuer, and Kathrin M. Bernt. "Tight Regulation of H3K79 Methylation Levels in KMT2A-Rearranged AML." Blood 132, Supplement 1 (2018): 3884. http://dx.doi.org/10.1182/blood-2018-99-114784.
Pełny tekst źródłaDeshpande, Aniruddha J., Liying Chen, Maurizio Fazio, et al. "MLL-AF6 Mediated Transformation Is Dependent On the H3K79 Methyl-transferase Dot1l." Blood 120, no. 21 (2012): 3502. http://dx.doi.org/10.1182/blood.v120.21.3502.3502.
Pełny tekst źródłaXu, Jie, Wu Zhang, Xiaojing Yan, et al. "NPM1 Mutation Contributes to Hematological Dysfunction By Disrupting H3K79 Methylation." Blood 128, no. 22 (2016): 2702. http://dx.doi.org/10.1182/blood.v128.22.2702.2702.
Pełny tekst źródłaBon, Corentin, Yang Si, Melanie Pernak, et al. "Synthesis and Biological Activity of a Cytostatic Inhibitor of MLLr Leukemia Targeting the DOT1L Protein." Molecules 26, no. 17 (2021): 5300. http://dx.doi.org/10.3390/molecules26175300.
Pełny tekst źródłaDickins, Ross A. "Rerouting DOT1L inhibitors in leukemia." Blood 136, no. 17 (2020): 1900–1901. http://dx.doi.org/10.1182/blood.2020007352.
Pełny tekst źródłaSoria-Valles, Clara, Fernando G. Osorio, and Carlos López-Otín. "Reprogramming aging through DOT1L inhibition." Cell Cycle 14, no. 21 (2015): 3345–46. http://dx.doi.org/10.1080/15384101.2015.1093443.
Pełny tekst źródłaBarve, Vega, Shah, et al. "Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia." Cells 8, no. 11 (2019): 1322. http://dx.doi.org/10.3390/cells8111322.
Pełny tekst źródła