Artykuły w czasopismach na temat „Drosophila IFM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 46 najlepszych artykułów w czasopismach naukowych na temat „Drosophila IFM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Loya, Amy K., Sarah K. Van Houten, Bernadette M. Glasheen, and Douglas M. Swank. "Shortening deactivation: quantifying a critical component of cyclical muscle contraction." American Journal of Physiology-Cell Physiology 322, no. 4 (2022): C653—C665. http://dx.doi.org/10.1152/ajpcell.00281.2021.
Pełny tekst źródłaKreuz, A. J., A. Simcox, and D. Maughan. "Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants." Journal of Cell Biology 135, no. 3 (1996): 673–87. http://dx.doi.org/10.1083/jcb.135.3.673.
Pełny tekst źródłaGu, Wenzhi, Qiufang Li, Meng Ding, et al. "Regular Exercise Rescues Heart Function Defects and Shortens the Lifespan of Drosophila Caused by dMnM Downregulation." International Journal of Environmental Research and Public Health 19, no. 24 (2022): 16554. http://dx.doi.org/10.3390/ijerph192416554.
Pełny tekst źródłaGlasheen, Bernadette M., Catherine C. Eldred, Leah C. Sullivan, et al. "Stretch activation properties of Drosophila and Lethocerus indirect flight muscle suggest similar calcium-dependent mechanisms." American Journal of Physiology-Cell Physiology 313, no. 6 (2017): C621—C631. http://dx.doi.org/10.1152/ajpcell.00110.2017.
Pełny tekst źródłaKulke, Michael, Ciprian Neagoe, Bernhard Kolmerer, et al. "Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle." Journal of Cell Biology 154, no. 5 (2001): 1045–58. http://dx.doi.org/10.1083/jcb.200104016.
Pełny tekst źródłaZhao, Cuiping, and Douglas M. Swank. "The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type." American Journal of Physiology-Cell Physiology 312, no. 2 (2017): C111—C118. http://dx.doi.org/10.1152/ajpcell.00284.2016.
Pełny tekst źródłaQIU, Feng, Anne LAKEY, Bogos AGIANIAN, et al. "Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect." Biochemical Journal 371, no. 3 (2003): 811–21. http://dx.doi.org/10.1042/bj20021814.
Pełny tekst źródłaBrault, V., M. C. Reedy, U. Sauder, R. A. Kammerer, U. Aebi, and C. Schoenenberger. "Substitution of flight muscle-specific actin by human (beta)-cytoplasmic actin in the indirect flight muscle of Drosophila." Journal of Cell Science 112, no. 21 (1999): 3627–39. http://dx.doi.org/10.1242/jcs.112.21.3627.
Pełny tekst źródłaBabu, Sajesh, and Nallur B. Ramachandra. "Screen for new mutations on the 2nd chromosome involved in indirect flight muscle development in Drosophila melanogaster." Genome 50, no. 4 (2007): 343–50. http://dx.doi.org/10.1139/g07-012.
Pełny tekst źródłaReedy, Mary C., Belinda Bullard, and Jim O. Vigoreaux. "Flightin Is Essential for Thick Filament Assembly and Sarcomere Stability in Drosophila Flight Muscles." Journal of Cell Biology 151, no. 7 (2000): 1483–500. http://dx.doi.org/10.1083/jcb.151.7.1483.
Pełny tekst źródłaHao, Yudong, Sanford I. Bernstein, and Gerald H. Pollack. "Passive stiffness of Drosophila IFM myofibrils: a novel, high accuracy." Journal of Muscle Research and Cell Motility 25, no. 4-5 (2004): 359–66. http://dx.doi.org/10.1007/s10974-004-0684-5.
Pełny tekst źródłaTanner, Bertrand C. W., Mark S. Miller, Becky M. Miller, et al. "COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle." American Journal of Physiology-Cell Physiology 301, no. 2 (2011): C383—C391. http://dx.doi.org/10.1152/ajpcell.00016.2011.
Pełny tekst źródłaDhanyasi, Nagaraju, Dagan Segal, Eyal Shimoni, et al. "Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles." Journal of Cell Biology 211, no. 1 (2015): 191–203. http://dx.doi.org/10.1083/jcb.201503005.
Pełny tekst źródłaFernandes, J., M. Bate, and K. Vijayraghavan. "Development of the indirect flight muscles of Drosophila." Development 113, no. 1 (1991): 67–77. http://dx.doi.org/10.1242/dev.113.1.67.
Pełny tekst źródłaWarmke, J. W., A. J. Kreuz, and S. Falkenthal. "Co-localization to chromosome bands 99E1-3 of the Drosophila melanogaster myosin light chain-2 gene and a haplo-insufficient locus that affects flight behavior." Genetics 122, no. 1 (1989): 139–51. http://dx.doi.org/10.1093/genetics/122.1.139.
Pełny tekst źródłaBrault, Véronique, Ursula Sauder, Mary C. Reedy, Ueli Aebi, and Cora-Ann Schoenenberger. "Differential Epitope Tagging of Actin in TransformedDrosophila Produces Distinct Effects on Myofibril Assembly and Function of the Indirect Flight Muscle." Molecular Biology of the Cell 10, no. 1 (1999): 135–49. http://dx.doi.org/10.1091/mbc.10.1.135.
Pełny tekst źródłaStandiford, David M., Wei Tao Sun, Mary Beth Davis, and Charles P. Emerson. "Positive and Negative Intronic Regulatory Elements Control Muscle-Specific Alternative Exon Splicing of Drosophila Myosin Heavy Chain Transcripts." Genetics 157, no. 1 (2001): 259–71. http://dx.doi.org/10.1093/genetics/157.1.259.
Pełny tekst źródłaTansey, T., J. R. Schultz, R. C. Miller, and R. V. Storti. "Small differences in Drosophila tropomyosin expression have significant effects on muscle function." Molecular and Cellular Biology 11, no. 12 (1991): 6337–42. http://dx.doi.org/10.1128/mcb.11.12.6337-6342.1991.
Pełny tekst źródłaTansey, T., J. R. Schultz, R. C. Miller, and R. V. Storti. "Small differences in Drosophila tropomyosin expression have significant effects on muscle function." Molecular and Cellular Biology 11, no. 12 (1991): 6337–42. http://dx.doi.org/10.1128/mcb.11.12.6337.
Pełny tekst źródłaSchultz, J. R., T. Tansey, L. Gremke, and R. V. Storti. "A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression." Molecular and Cellular Biology 11, no. 4 (1991): 1901–11. http://dx.doi.org/10.1128/mcb.11.4.1901-1911.1991.
Pełny tekst źródłaSchultz, J. R., T. Tansey, L. Gremke, and R. V. Storti. "A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression." Molecular and Cellular Biology 11, no. 4 (1991): 1901–11. http://dx.doi.org/10.1128/mcb.11.4.1901.
Pełny tekst źródłaNewhard, Christopher S., Sam Walcott, and Douglas M. Swank. "The load dependence of muscle’s force-velocity curve is modulated by alternative myosin converter domains." American Journal of Physiology-Cell Physiology 316, no. 6 (2019): C844—C861. http://dx.doi.org/10.1152/ajpcell.00494.2018.
Pełny tekst źródłaKomlós, Marcell, Janka Szinyákovics, Gergő Falcsik, et al. "The Small-Molecule Enhancers of Autophagy AUTEN-67 and -99 Delay Ageing in Drosophila Striated Muscle Cells." International Journal of Molecular Sciences 24, no. 9 (2023): 8100. http://dx.doi.org/10.3390/ijms24098100.
Pełny tekst źródłaHastings, G. A., and C. P. Emerson. "Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila." Journal of Cell Biology 114, no. 2 (1991): 263–76. http://dx.doi.org/10.1083/jcb.114.2.263.
Pełny tekst źródłaNongthomba, Upendra, Mark Cummins, Samantha Clark, Jim O. Vigoreaux, and John C. Sparrow. "Suppression of Muscle Hypercontraction by Mutations in the Myosin Heavy Chain Gene of Drosophila melanogaster." Genetics 164, no. 1 (2003): 209–22. http://dx.doi.org/10.1093/genetics/164.1.209.
Pełny tekst źródłaMenard, Lynda M., Neil B. Wood, and Jim O. Vigoreaux. "Contiguity and Structural Impacts of a Non-Myosin Protein within the Thick Filament Myosin Layers." Biology 10, no. 7 (2021): 613. http://dx.doi.org/10.3390/biology10070613.
Pełny tekst źródłaMadan, Aditi, Divesh Thimmaiya, Ari Franco-Cea, et al. "Transcriptome analysis of IFM-specific actin and myosin nulls in Drosophila melanogaster unravels lesion-specific expression blueprints across muscle mutations." Gene 631 (October 2017): 16–28. http://dx.doi.org/10.1016/j.gene.2017.07.061.
Pełny tekst źródłaChun, M., and S. Falkenthal. "Ifm(2)2 is a myosin heavy chain allele that disrupts myofibrillar assembly only in the indirect flight muscle of Drosophila melanogaster." Journal of Cell Biology 107, no. 6 (1988): 2613–21. http://dx.doi.org/10.1083/jcb.107.6.2613.
Pełny tekst źródłaChakravorty, Samya, Bertrand C. W. Tanner, Veronica Lee Foelber, et al. "Flightin maintains myofilament lattice organization required for optimal flight power and courtship song quality in Drosophila." Proceedings of the Royal Society B: Biological Sciences 284, no. 1854 (2017): 20170431. http://dx.doi.org/10.1098/rspb.2017.0431.
Pełny tekst źródłaCripps, R. M., E. Ball, M. Stark, A. Lawn, and J. C. Sparrow. "Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function." Genetics 137, no. 1 (1994): 151–64. http://dx.doi.org/10.1093/genetics/137.1.151.
Pełny tekst źródłaMenard, Lynda M., Neil B. Wood, and Jim O. Vigoreaux. "Secondary Structure of the Novel Myosin Binding Domain WYR and Implications within Myosin Structure." Biology 10, no. 7 (2021): 603. http://dx.doi.org/10.3390/biology10070603.
Pełny tekst źródłaWalls, Stanley M., Dale A. Chatfield, Karen Ocorr, Greg L. Harris та Rolf Bodmer. "Systemic and heart autonomous effects of sphingosine Δ4 desaturase deficiency in lipotoxic cardiac pathophysiology". Disease Models & Mechanisms 13, № 8 (2020): dmm043083. http://dx.doi.org/10.1242/dmm.043083.
Pełny tekst źródłaBloemink, Marieke J., Karen H. Hsu, Michael A. Geeves, and Sanford I. Bernstein. "Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain." Journal of Biological Chemistry 295, no. 42 (2020): 14522–35. http://dx.doi.org/10.1074/jbc.ra120.014684.
Pełny tekst źródłaWang, Yang, Girish C. Melkani, Jennifer A. Suggs, et al. "Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness." Molecular Biology of the Cell 23, no. 11 (2012): 2057–65. http://dx.doi.org/10.1091/mbc.e12-02-0120.
Pełny tekst źródłaLittlefield, Kimberly Palmiter, Douglas M. Swank, Becky M. Sanchez, Aileen F. Knowles, David M. Warshaw, and Sanford I. Bernstein. "The converter domain modulates kinetic properties ofDrosophila myosin." American Journal of Physiology-Cell Physiology 284, no. 4 (2003): C1031—C1038. http://dx.doi.org/10.1152/ajpcell.00474.2002.
Pełny tekst źródłaMoshrefi, Mandana, Kamal Ahmadi, Amin Purhematy, Maziar Jajarmi, and yasin SarveAhrabi. "Detection of Antibacterial Properties of Musca domestica, Drosophila melanogaster, and Sarcophaga nodosa Using Resazurin as A Growth Indicator in Bacterial Cells." Infection Epidemiology and Microbiology 6, no. 3 (2020): 201–9. http://dx.doi.org/10.29252/iem.6.3.201.
Pełny tekst źródłaLee, Pauline, Ngoc Ho, Terri Gelbart, and Ernest Beutler. "Polymorphisms in the human homologue of the drosophila Indy (I'm not dead yet) gene." Mechanisms of Ageing and Development 124, no. 8-9 (2003): 897–902. http://dx.doi.org/10.1016/s0047-6374(03)00149-0.
Pełny tekst źródłaCormier, Sarah, Stéphanie Le Bras, Céline Souilhol, et al. "The Murine Ortholog of Notchless, a Direct Regulator of the Notch Pathway in Drosophila melanogaster, Is Essential for Survival of Inner Cell Mass Cells." Molecular and Cellular Biology 26, no. 9 (2006): 3541–49. http://dx.doi.org/10.1128/mcb.26.9.3541-3549.2006.
Pełny tekst źródłaZheng, Jolene, David Heber, Mingming Wang, et al. "Pomegranate juice and extract extended lifespan and reduced intestinal fat deposition in Caenorhabditis elegans." International Journal for Vitamin and Nutrition Research 87, no. 3-4 (2017): 149–58. http://dx.doi.org/10.1024/0300-9831/a000570.
Pełny tekst źródłaINOUE, Katsuhisa, Lina ZHUANG, Dennis M. MADDOX, Sylvia B. SMITH, and Vadivel GANAPATHY. "Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action." Biochemical Journal 374, no. 1 (2003): 21–26. http://dx.doi.org/10.1042/bj20030827.
Pełny tekst źródłaKopel, Jonathan J., Yangzom D. Bhutia, Sathish Sivaprakasam, and Vadivel Ganapathy. "Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood–brain barrier." Biochemical Journal 478, no. 3 (2021): 463–86. http://dx.doi.org/10.1042/bcj20200877.
Pełny tekst źródłaKnauf, Felix, Nilufar Mohebbi, Carsten Teichert, et al. "The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates." Biochemical Journal 397, no. 1 (2006): 25–29. http://dx.doi.org/10.1042/bj20060409.
Pełny tekst źródłaShwartz, Arkadi, Nagaraju Dhanyasi, Eyal D. Schejter, and Ben-Zion Shilo. "The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly." eLife 5 (October 12, 2016). http://dx.doi.org/10.7554/elife.16540.
Pełny tekst źródłaGunderson, Jakob T., Ashley E. Peppriell, Ian N. Krout, Daria Vorojeikina, and Matthew D. Rand. "Neuroligin-1 is a mediator of methylmercury neuromuscular toxicity." Toxicological Sciences, September 21, 2021. http://dx.doi.org/10.1093/toxsci/kfab114.
Pełny tekst źródłaLin, Min-Han, Madeline K. Jensen, Nathan D. Elrod, et al. "Inositol hexakisphosphate is required for Integrator function." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-33506-3.
Pełny tekst źródłaNaït-Saïdi, Rima, Aymeric Chartier, Emmanuelle Abgueguen, Philippe Guédat, and Martine Simonelig. "The small compound Icerguastat reduces muscle defects in oculopharyngeal muscular dystrophy through the PERK pathway of the unfolded protein response." Open Biology 13, no. 4 (2023). http://dx.doi.org/10.1098/rsob.230008.
Pełny tekst źródła