Artykuły w czasopismach na temat „Effort inertiel du fluide”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Effort inertiel du fluide”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhao, Wu, Quan Bin Zhang, Wei Tao Jia, and Zhan Qi Hu. "Influence on BTA Boring Bar Transverse Vibration Considering Inner Cutting Fluid Velocity and Axial Force." Advanced Materials Research 887-888 (February 2014): 1215–18. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.1215.
Pełny tekst źródłaKim, Uihwan, Joo-Yong Kwon, Taehoon Kim, and Younghak Cho. "Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section." Micromachines 13, no. 2 (2022): 151. http://dx.doi.org/10.3390/mi13020151.
Pełny tekst źródłaKwon, Joo-Yong, Taehoon Kim, Jungwoo Kim, and Younghak Cho. "Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel." Micromachines 11, no. 11 (2020): 998. http://dx.doi.org/10.3390/mi11110998.
Pełny tekst źródłaLi, Gaojin, Gareth H. McKinley, and Arezoo M. Ardekani. "Dynamics of particle migration in channel flow of viscoelastic fluids." Journal of Fluid Mechanics 785 (November 23, 2015): 486–505. http://dx.doi.org/10.1017/jfm.2015.619.
Pełny tekst źródłaMei, Renwei, and Ronald J. Adrian. "Effect of Reynolds Number on Isotropic Turbulent Dispersion." Journal of Fluids Engineering 117, no. 3 (1995): 402–9. http://dx.doi.org/10.1115/1.2817276.
Pełny tekst źródłaJayaram, Rohith, Yucheng Jie, Lihao Zhao, and Helge I. Andersson. "Dynamics of inertial spheroids in a decaying Taylor–Green vortex flow." Physics of Fluids 35, no. 3 (2023): 033326. http://dx.doi.org/10.1063/5.0138125.
Pełny tekst źródłaSalazar, Juan P. L. C., and Lance R. Collins. "Inertial particle relative velocity statistics in homogeneous isotropic turbulence." Journal of Fluid Mechanics 696 (March 5, 2012): 45–66. http://dx.doi.org/10.1017/jfm.2012.2.
Pełny tekst źródłaMeng, Fan-Ming, Sheng Yang, Zhi-Tao Cheng, Yong Zheng, and Bin Wang. "Effect of fluid inertia force on thermal elastohydrodynamic lubrication of elliptic contact." Mechanics & Industry 22 (2021): 13. http://dx.doi.org/10.1051/meca/2021010.
Pełny tekst źródłaБлинков, Юрий Анатольевич, Лев Ильич Могилевич, Виктор Сергеевич Попов, and Елизавета Викторовна Попова. "Evolution of solitary hydroelastic strain waves in two coaxial cylindrical shells with the Schamel physical nonlinearity." Computational Continuum Mechanics 16, no. 4 (2023): 430–44. http://dx.doi.org/10.7242/1999-6691/2023.16.4.36.
Pełny tekst źródłaBehera, Nalinikanta, Shubhadeep Mandal, and Suman Chakraborty. "Electrohydrodynamic settling of drop in uniform electric field: beyond Stokes flow regime." Journal of Fluid Mechanics 881 (October 24, 2019): 498–523. http://dx.doi.org/10.1017/jfm.2019.744.
Pełny tekst źródłaHazel, Andrew L., and Matthias Heil. "Finite-Reynolds-Number Effects in Steady, Three-Dimensional Airway Reopening." Journal of Biomechanical Engineering 128, no. 4 (2006): 573–78. http://dx.doi.org/10.1115/1.2206203.
Pełny tekst źródłaZandi Pour, Hamid Reza, and Michele Iovieno. "The Role of Particle Inertia and Thermal Inertia in Heat Transfer in a Non-Isothermal Particle-Laden Turbulent Flow." Fluids 9, no. 1 (2024): 29. http://dx.doi.org/10.3390/fluids9010029.
Pełny tekst źródłaJi, Bingyu, Yingfu He, Yongqiang Tang, and Shu Yang. "Inertial property of oscillatory flow for pulse injection in porous media." Energy Exploration & Exploitation 39, no. 4 (2021): 1184–94. http://dx.doi.org/10.1177/0144598721999786.
Pełny tekst źródłaLAVEZZO, V., A. SOLDATI, S. GERASHCHENKO, Z. WARHAFT, and L. R. COLLINS. "On the role of gravity and shear on inertial particle accelerations in near-wall turbulence." Journal of Fluid Mechanics 658 (June 15, 2010): 229–46. http://dx.doi.org/10.1017/s0022112010001655.
Pełny tekst źródłaMarath, Navaneeth K., and Ganesh Subramanian. "The effect of inertia on the time period of rotation of an anisotropic particle in simple shear flow." Journal of Fluid Mechanics 830 (September 29, 2017): 165–210. http://dx.doi.org/10.1017/jfm.2017.534.
Pełny tekst źródłaWang, Yueying, Jun Yao, and Zhaoqin Huang. "Parameter Effect Analysis of Non-Darcy Flow and a Method for Choosing a Fluid Flow Equation in Fractured Karstic Carbonate Reservoirs." Energies 15, no. 10 (2022): 3623. http://dx.doi.org/10.3390/en15103623.
Pełny tekst źródłaRen, Hong, Fan Chun Li, and Tian Yu Zhao. "Modal Analysis of Marine Propeller Submerged in Fluid." Advanced Materials Research 1030-1032 (September 2014): 1201–5. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.1201.
Pełny tekst źródłaSingh, Udaya, Ram Gupta, and Vijay Kapur. "Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model." Chemical and Process Engineering 32, no. 4 (2011): 333–49. http://dx.doi.org/10.2478/v10176-011-0027-1.
Pełny tekst źródłaWalicka, A., and J. Falicki. "Inertia Effects in the Flow of a Herschel-Bulkley ERF between Fixed Surfaces of Revolution." Smart Materials Research 2013 (July 24, 2013): 1–10. http://dx.doi.org/10.1155/2013/171456.
Pełny tekst źródłaWalicka, A., and J. Falicki. "Reynolds Number Effects in the Flow of a Vočadlo Electrorheological Fluid in a Curved Gap." International Journal of Applied Mechanics and Engineering 22, no. 3 (2017): 675–95. http://dx.doi.org/10.1515/ijame-2017-0043.
Pełny tekst źródłaMisbah, Chaouqi. "Soft suspensions: inertia cooperates with flexibility." Journal of Fluid Mechanics 760 (October 30, 2014): 1–4. http://dx.doi.org/10.1017/jfm.2014.443.
Pełny tekst źródłaDabade, Vivekanand, Navaneeth K. Marath, and Ganesh Subramanian. "The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow." Journal of Fluid Mechanics 791 (February 24, 2016): 631–703. http://dx.doi.org/10.1017/jfm.2016.14.
Pełny tekst źródłaYuan, Chao, Hong-Na Zhang, Yu-Ke Li, Xiao-Bin Li, Jian Wu, and Feng-Chen Li. "Nonlinear effects of viscoelastic fluid flows and applications in microfluidics: A review." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 22 (2020): 4390–414. http://dx.doi.org/10.1177/0954406220922863.
Pełny tekst źródłaChen, Xiaoming, Yuchuan Zhu, Travis Wiens, Doug Bitner, and Jie Ling. "Characteristic investigation of a flow-dependent inertia hydraulic converter driven by an equivalent fast switching valve." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236, no. 7 (2022): 3354–74. http://dx.doi.org/10.1177/09544062211038983.
Pełny tekst źródłaHuang, Shujuan, Diana-Andra Borca-Tasciuc, and John A. Tichy. "A simple expression for fluid inertia force acting on micro-plates undergoing squeeze film damping." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2126 (2010): 522–36. http://dx.doi.org/10.1098/rspa.2010.0216.
Pełny tekst źródłaAnnapurna T, K.S.R. Sridhar, and M Karuna Prasad. "Effect of Different Shapes of Nanoparticles on Mixed Convective Nanofluid Flow in a Darcy-Forchhiemer Porous Medium." CFD Letters 16, no. 12 (2024): 38–58. http://dx.doi.org/10.37934/cfdl.16.12.3858.
Pełny tekst źródłaHormozi, S., and I. A. Frigaard. "Dispersion of solids in fracturing flows of yield stress fluids." Journal of Fluid Mechanics 830 (September 29, 2017): 93–137. http://dx.doi.org/10.1017/jfm.2017.465.
Pełny tekst źródłaRavichandran, S., and Rama Govindarajan. "Vortex-dipole collapse induced by droplet inertia and phase change." Journal of Fluid Mechanics 832 (October 26, 2017): 745–76. http://dx.doi.org/10.1017/jfm.2017.677.
Pełny tekst źródłaSan Andre´s, Luis. "Turbulent Hybrid Bearings With Fluid Inertia Effects." Journal of Tribology 112, no. 4 (1990): 699–707. http://dx.doi.org/10.1115/1.2920318.
Pełny tekst źródłaPatankar, N. A., and H. H. Hu. "A Numerical Investigation of the Detachment of the Trailing Particle From a Chain Sedimenting in Newtonian and Viscoelastic Fluids." Journal of Fluids Engineering 122, no. 3 (2000): 517–21. http://dx.doi.org/10.1115/1.1287269.
Pełny tekst źródłaKrüger, Timm, Badr Kaoui, and Jens Harting. "Interplay of inertia and deformability on rheological properties of a suspension of capsules." Journal of Fluid Mechanics 751 (June 27, 2014): 725–45. http://dx.doi.org/10.1017/jfm.2014.315.
Pełny tekst źródłaLott, François, Christophe Millet, and Jacques Vanneste. "Inertia–gravity waves in inertially stable and unstable shear flows." Journal of Fluid Mechanics 775 (June 19, 2015): 223–40. http://dx.doi.org/10.1017/jfm.2015.303.
Pełny tekst źródłaBhattacharya, Sukalyan, Dil K. Gurung, and Shahin Navardi. "Radial lift on a suspended finite-sized sphere due to fluid inertia for low-Reynolds-number flow through a cylinder." Journal of Fluid Mechanics 722 (March 28, 2013): 159–86. http://dx.doi.org/10.1017/jfm.2012.636.
Pełny tekst źródłaDai, Minglu, Chengxu Tu, Pengfei Du, et al. "Near-Wall Settling Behavior of a Particle in Stratified Fluids." Micromachines 13, no. 12 (2022): 2070. http://dx.doi.org/10.3390/mi13122070.
Pełny tekst źródłaMiguel, Antonio F. "Experimental Study on Nanofluid Flow in a Porous Cylinder: Viscosity, Permeability and Inertial Factor." Defect and Diffusion Forum 362 (April 2015): 47–57. http://dx.doi.org/10.4028/www.scientific.net/ddf.362.47.
Pełny tekst źródłaTijjani Lawal Hassan, Abdul Rahman Mohd Kasim, and Mohd Haziezan Hassan. "A Comparative Analysis on Single and Two Phase Casson Fluid under Aligned Magnetic Field Effect and Newtonian Heating." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 110, no. 2 (2023): 206–18. http://dx.doi.org/10.37934/arfmts.110.2.206218.
Pełny tekst źródłaLiu, Benhua, Hao Zhan, Yiran Liu, et al. "Effects of Slip Length and Inertia on the Permeability of Fracture with Slippery Boundary Condition." International Journal of Environmental Research and Public Health 17, no. 11 (2020): 3817. http://dx.doi.org/10.3390/ijerph17113817.
Pełny tekst źródłaMelkonyan, A., and M. Chuklin. "Calculation algorithm and software for pipeline vibrations with consideration of internal flow." Transactions of the Krylov State Research Centre S-I, no. 2 (2020): 260–65. http://dx.doi.org/10.24937/2542-2324-2020-2-s-i-260-265.
Pełny tekst źródłaMa, Xuezhong. "Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces." Lubricants 11, no. 7 (2023): 270. http://dx.doi.org/10.3390/lubricants11070270.
Pełny tekst źródłaMAGNAUDET, JACQUES, SHU TAKAGI, and DOMINIQUE LEGENDRE. "Drag, deformation and lateral migration of a buoyant drop moving near a wall." Journal of Fluid Mechanics 476 (February 10, 2003): 115–57. http://dx.doi.org/10.1017/s0022112002002902.
Pełny tekst źródłaBanerjee, I., M. E. Rosti, T. Kumar, L. Brandt, and A. Russom. "Analogue tuning of particle focusing in elasto-inertial flow." Meccanica 56, no. 7 (2021): 1739–49. http://dx.doi.org/10.1007/s11012-021-01329-z.
Pełny tekst źródłaSiddiqui, Abdul Majeed, Khadija Maqbool, Afifa Ahmed, and Amer Bilal Mann. "Inertial and Linear Re-Absorption Effects on a Synovial Fluid Flow Through a Lubricated Knee Joint." Lubricants 13, no. 5 (2025): 196. https://doi.org/10.3390/lubricants13050196.
Pełny tekst źródłaJafargholinejad, Shapour, and Mohammad Najafi. "Inertia flows of Bingham fluids through a planar channel: Hydroelastic instability analysis." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 13 (2017): 2394–403. http://dx.doi.org/10.1177/0954406217711470.
Pełny tekst źródłaDalwadi, Mohit P., S. Jonathan Chapman, James M. Oliver, and Sarah L. Waters. "The effect of weak inertia in rotating high-aspect-ratio vessel bioreactors." Journal of Fluid Mechanics 835 (November 27, 2017): 674–720. http://dx.doi.org/10.1017/jfm.2017.760.
Pełny tekst źródłaRAY, BAIDURJA, and LANCE R. COLLINS. "Preferential concentration and relative velocity statistics of inertial particles in Navier–Stokes turbulence with and without filtering." Journal of Fluid Mechanics 680 (June 6, 2011): 488–510. http://dx.doi.org/10.1017/jfm.2011.174.
Pełny tekst źródłaLardigue, A., and S. Bennis. "Pulsatile Laminar Flow in a Viscoelastic System." Journal of Fluids Engineering 118, no. 4 (1996): 829–32. http://dx.doi.org/10.1115/1.2835516.
Pełny tekst źródłaMaeyama, Kohei, Shunichi Ishida, and Yohsuke Imai. "Peristaltic transport of a power-law fluid induced by a single wave: A numerical analysis using the cumulant lattice Boltzmann method." Physics of Fluids 34, no. 11 (2022): 111911. http://dx.doi.org/10.1063/5.0122182.
Pełny tekst źródłaBHATTI, M. M., and A. ZEESHAN. "HEAT AND MASS TRANSFER ANALYSIS ON PERISTALTIC FLOW OF PARTICLE–FLUID SUSPENSION WITH SLIP EFFECTS." Journal of Mechanics in Medicine and Biology 17, no. 02 (2017): 1750028. http://dx.doi.org/10.1142/s0219519417500282.
Pełny tekst źródłaMeng, Meng, Stefan Z. Miska, Mengjiao Yu, and Evren M. Ozbayoglu. "Fully Coupled Modeling of Dynamic Loading of the Wellbore." SPE Journal 25, no. 03 (2019): 1462–88. http://dx.doi.org/10.2118/198914-pa.
Pełny tekst źródłaMoruzzi, Rodrigo Braga, Joice Gonçalves, Lais Galileu Speranza, and André Luiz de Oliveira. "Influência da ação combinada do transporte inercial e da sedimentação diferencial nos agregados após cessada a floculação mecanizada." Engenharia Sanitaria e Ambiental 27, no. 4 (2022): 723–29. http://dx.doi.org/10.1590/s1413-415220200291.
Pełny tekst źródła