Gotowa bibliografia na temat „Elliptic curve elgamal cryptosystem”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Elliptic curve elgamal cryptosystem”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Elliptic curve elgamal cryptosystem"

1

Kamthawee, Krissanee, and Bhichate Chiewthanakul. "The Construction of ElGamal over Koblitz Curve." Advanced Materials Research 931-932 (May 2014): 1441–46. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.1441.

Pełny tekst źródła
Streszczenie:
Recently elliptic curve cryptosystems are widely accepted for security applications key generation, signature and verification. Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points of the curve. it is possible to use smaller primes, or smaller finite fields, with elliptic curves and achieve a level of security comparable to that for much larger integers. Koblitz curves, also known as anomalous binary curves, are elliptic curves defined over F2. The primary advantage of these curves is that point multiplication algorithms can be devised that do not use any
Style APA, Harvard, Vancouver, ISO itp.
2

Ismail, N. H. M., and M. Y. Misro. "Bézier Coefficients Matrix for ElGamal Elliptic Curve Cryptosystem." Malaysian Journal of Mathematical Sciences 16, no. 3 (2022): 483–99. http://dx.doi.org/10.47836/mjms.16.3.06.

Pełny tekst źródła
Streszczenie:
It is well-known that cryptography is a branch of secrecy in science and mathematics, which usually preserves the confidentiality and authenticity of the information, where its growth is parallel with the rapid evolution of the internet and communication. As one of the prominent public key cryptosystems, the Elliptic Curve Cryptosystem (ECC) offers efficiency and complex mathematical operations with a smaller bit compared to other types of public key schemes. Throughout the evolution of cryptography, ElGamal Elliptic Curve Cryptosystem (ElGamal ECC) revolved from ElGamal public key scheme for
Style APA, Harvard, Vancouver, ISO itp.
3

Luhaib, Qasim Mohsin, and Ruma Kareem K. Ajeena. "Elliptic curve matrices over group ring to improve elliptic curve–discrete logarithm cryptosystems." Journal of Discrete Mathematical Sciences and Cryptography 26, no. 6 (2023): 1699–704. http://dx.doi.org/10.47974/jdmsc-1616.

Pełny tekst źródła
Streszczenie:
An elliptic curve matrix (ECM) is created randomly based on an elliptic curve group to modify the elliptic curve-discrete logarithm (EC-DL) cryptosystems, which are elliptic Diffie-Hellman key exchange (DHKE) and elliptic ElGamal public key cryptosystem (EEPKC), and to increase the security level in comparison with the original EC-DL schemes. In proposed schemes, the keys and ciphertext are computed using the ECMs. The security of trust schemes depended on the difficulty of solving the elliptic curve discrete logarithm problem (ECM-DLP). New experimental results on proposed schemes are discuss
Style APA, Harvard, Vancouver, ISO itp.
4

Abdelhakim, Chillali, and M'hammed Boulagouaz. "Methods of encryption keys, example of elliptic curve." Journal of Communications and Computer Engineering 3, no. 1 (2012): 7. http://dx.doi.org/10.20454/jcce.2013.259.

Pełny tekst źródła
Streszczenie:
In this paper we propose an application of public key distribution based on the security depending on the difficulty of elliptic curve discrete logarithm problem. More precisely, we propose an example of Elgamal encryption cryptosystem on the elliptic curve given by the equation:
Style APA, Harvard, Vancouver, ISO itp.
5

Wu, Huangwei. "General analysis on essential mathematical principles of elliptic curve cryptography." Theoretical and Natural Science 10, no. 1 (2023): 123–29. http://dx.doi.org/10.54254/2753-8818/10/20230327.

Pełny tekst źródła
Streszczenie:
Prevalent is the practical application of Elliptic Curve Cryptography (ECC) in the modern public-key cryptosystem, especially the implementation of ECC algorithm in Bitcoin source code. With the thorough introduction of discrete logarithm and Diffie-Hellman key exchange, ECC has gradually progressed to be sophisticated and efficient simultaneously. Therefore, it currently has been widely regarded as the successor of RSA algorithm in terms of inheritance for its shorter lengths of keys, faster speed and higher safety under the same encryption strength. Due to the potential safety and complexity
Style APA, Harvard, Vancouver, ISO itp.
6

Sangeetha, V., T. Anupreethi, and Manju Somanath. "Cryptographic Application of Elliptic Curve Generated through Centered Hexadecagonal Numbers." Indian Journal Of Science And Technology 17, no. 20 (2024): 2074–78. http://dx.doi.org/10.17485/ijst/v17i20.1183.

Pełny tekst źródła
Streszczenie:
Background/Objectives: Elliptic Curve Cryptography (ECC) is a public-key encryption method that is similar to RSA. ECC uses the mathematical concept of elliptic curves to achieve the same level of security with significantly smaller keys, whereas RSA's security depends on large prime numbers. Elliptic curves and their applications in cryptography will be discussed in this paper. The elliptic curve is formed by the extension of a Diophantine pair of Centered Hexadecagonal numbers to a Diophantine triple with property D(8). Method: The Diffie–Hellman key exchange, named for Whitfield Diffie and
Style APA, Harvard, Vancouver, ISO itp.
7

V, Sangeetha, Anupreethi T, and Somanath Manju. "Cryptographic Application of Elliptic Curve Generated through Centered Hexadecagonal Numbers." Indian Journal of Science and Technology 17, no. 20 (2024): 2074–78. https://doi.org/10.17485/IJST/v17i20.1183.

Pełny tekst źródła
Streszczenie:
Abstract <strong>Background/Objectives:</strong>&nbsp;Elliptic Curve Cryptography (ECC) is a public-key encryption method that is similar to RSA. ECC uses the mathematical concept of elliptic curves to achieve the same level of security with significantly smaller keys, whereas RSA's security depends on large prime numbers. Elliptic curves and their applications in cryptography will be discussed in this paper. The elliptic curve is formed by the extension of a Diophantine pair of Centered Hexadecagonal numbers to a Diophantine triple with property D(8).&nbsp;<strong>Method:</strong>&nbsp;The Di
Style APA, Harvard, Vancouver, ISO itp.
8

Sundararajan, Ananiah Durai Durai, and Rajashree R. "A Comprehensive Survey on Lightweight Asymmetric Key Cryptographic Algorithm for Resource Constrained Devices." ECS Transactions 107, no. 1 (2022): 7457–68. http://dx.doi.org/10.1149/10701.7457ecst.

Pełny tekst źródła
Streszczenie:
Elliptic Curve Cryptography, being a popular lightweight asymmetric key cryptographic algorithm that is widely adapted to meet high security requirement of resource constrained devices, were surveyed in this work. Further, ECC-based ElGamal cryptosystem, Elliptic Curve Digital Signature Algorithm, and Elliptic Curve Diffie Hellman Key Exchange Algorithm have been comprehensively reviewed with its characteristics and preferred applications. In addition, few related work are analyzed and suggestions for suitable target applications were provided. Moreover, ECC being a popular asymmetric key cryp
Style APA, Harvard, Vancouver, ISO itp.
9

Prabhdeep Kaur and Sheetal Kalra. "On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography." Journal of Technology Management for Growing Economies 6, no. 1 (2015): 39–52. http://dx.doi.org/10.15415/jtmge.2015.61004.

Pełny tekst źródła
Streszczenie:
Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for sec
Style APA, Harvard, Vancouver, ISO itp.
10

Lopez, Maria Isaura, and Ayad Barsoum. "Traditional Public-Key Cryptosystems and Elliptic Curve Cryptography." International Journal of Cyber Research and Education 4, no. 1 (2022): 1–14. http://dx.doi.org/10.4018/ijcre.309688.

Pełny tekst źródła
Streszczenie:
The need to establish safer communication channels in a world where technological development is progressing in leaps and bounds is indispensable. Thus, implementing cryptographic algorithms, which are more complex to compromise, improves the possibilities of securing our sensitive data. In this paper, the authors analyze the algorithmic foundations and perform a comparative analysis of the traditional public-key cryptographic algorithms (e.g., RSA, ElGamal, Schnorr, DSA) and elliptic curve cryptography with NIST recommended curves. In the study, they focus on six different security strengths:
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Elliptic curve elgamal cryptosystem"

1

Abu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.

Pełny tekst źródła
Streszczenie:
Data security will play a central role in the design of future IT systems. The PC has been a major driver of the digital economy. Recently, there has been a shift towards IT applications realized as embedded systems, because they have proved to be good solutions for many applications, especially those which require data processing in real time. Examples include security for wireless phones, wireless computing, pay-TV, and copy protection schemes for audio/video consumer products and digital cinemas. Most of these embedded applications will be wireless, which makes the communication channel vul
Style APA, Harvard, Vancouver, ISO itp.
2

Ho, Sun Wah. "A cryptosystem based on chaotic and elliptic curve cryptography /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-it-b19886238a.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.Phil.)--City University of Hong Kong, 2005.<br>"Submitted to Department of Computer Engineering and Information Technology in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 109-111)
Style APA, Harvard, Vancouver, ISO itp.
3

Singh, Namita. "Secure communication using elliptic curve cryptosystem in ad hoc network." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27730.

Pełny tekst źródła
Streszczenie:
Ad hoc networks are standalone networks supporting "communication anytime and anywhere" using portable devices like PDAs, cell phones, laptops etc. which require no predefined organization of available links but offer constraints such as battery life, bandwidth, memory, computational ability, security, quality of service, reliability, range of the device and speed. Security framework is essential and relies on certificates to communicate with each other but requires higher battery life, bandwidth and memory space. Researchers have been using keys as an alternative. However, no protocol is comp
Style APA, Harvard, Vancouver, ISO itp.
4

Abu, Mahfouz Adnan Mohammed I. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-06082005-144557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Man, Kwan Pok. "Security enhancement on the cryptosystem based on chaotic and elliptic curve cryptography /." access abstract and table of contents access full-text, 2006. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ee-b21471526a.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.Phil.)--City University of Hong Kong, 2006.<br>"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 93-97)
Style APA, Harvard, Vancouver, ISO itp.
6

Cai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kultinov, Kirill. "Software Implementations and Applications of Elliptic Curve Cryptography." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559232475298514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Arslanian, Samuel Thomas. "An implementation of the El Gamal elliptic curve cryptosystem over a finite field of characteristic P." Fogler Library, University of Maine, 1998. http://www.library.umaine.edu/theses/pdf/ArslanianST1998.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Poni, Sofia. "Le curve ellittiche in crittografia." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25677/.

Pełny tekst źródła
Streszczenie:
Il bisogno dell'uomo di nascondere e protegge le informazioni risale ad epoca antica; infatti, la crittografia ha avuto un ruolo molto importante in diversi momenti storici, basta pensare al cifrario di Cesare o alla macchina Enigma e la macchina di Lorenz durante la Seconda guerra mondiale, e questi sono solo alcuni esempi tra i più conosciuti. Per tanto, possiamo dire quindi che la crittografia rappresenta un vasto ambito di applicazione e al giorno d'oggi, con il rapido sviluppo della tecnologia, risulta essenziale per garantici sicurezza e privacy in quanto quest'ultima è stata minuta. Qui
Style APA, Harvard, Vancouver, ISO itp.
10

Hitchcock, Yvonne Roslyn. "Elliptic curve cryptography for lightweight applications." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/15838/1/Yvonne_Hitchcock_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
Elliptic curves were first proposed as a basis for public key cryptography in the mid 1980's. They provide public key cryptosystems based on the difficulty of the elliptic curve discrete logarithm problem (ECDLP) , which is so called because of its similarity to the discrete logarithm problem (DLP) over the integers modulo a large prime. One benefit of elliptic curve cryptosystems (ECCs) is that they can use a much shorter key length than other public key cryptosystems to provide an equivalent level of security. For example, 160 bit ECCs are believed to provide about the same level of security
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Elliptic curve elgamal cryptosystem"

1

Martin, Keith M. Public-Key Encryption. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788003.003.0005.

Pełny tekst źródła
Streszczenie:
In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of perfor
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Elliptic curve elgamal cryptosystem"

1

Zheng, Zhiyong. "Elliptic Curve." In Financial Mathematics and Fintech. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0920-7_6.

Pełny tekst źródła
Streszczenie:
AbstractIn 1985, mathematician v. Miller introduced elliptic curve into cryptography for the first time. In 1987, mathematician N. Koblitz further improved and perfected Miller’s work and formed the famous elliptic curve public key cryptosystem.
Style APA, Harvard, Vancouver, ISO itp.
2

Nitaj, Abderrahmane, Willy Susilo, and Joseph Tonien. "Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem." In Provable Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31919-9_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Akishita, Toru, and Tsuyoshi Takagi. "Zero-Value Point Attacks on Elliptic Curve Cryptosystem." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10958513_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wong, M. M., M. L. D. Wong, and Ka Lok Man. "Compact Multiplicative Inverter for Hardware Elliptic Curve Cryptosystem." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35606-3_58.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shankar, T. N., G. Sahoo, and S. Niranjan. "Digital Signature of an Image by Elliptic Curve Cryptosystem." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27317-9_35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chiou, C. W., Y. S. Sun, C. M. Lee, Y. L. Chiu, J. M. Lin, and C. Y. Lee. "Problems on Gaussian Normal Basis Multiplication for Elliptic Curve Cryptosystem." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23207-2_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Fangguo, and Zhuoran Zhang. "ECC$$^2$$: Error Correcting Code and Elliptic Curve Based Cryptosystem." In Cyberspace Safety and Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37337-5_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kadu, Rakesh K., and Dattatraya S. Adane. "Hardware Implementation of Elliptic Curve Cryptosystem Using Optimized Scalar Multiplication." In Smart Innovation, Systems and Technologies. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0077-0_32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zheng, Zhiyong, Kun Tian, and Fengxia Liu. "A Generalization of NTRUencrypt." In Financial Mathematics and Fintech. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_7.

Pełny tekst źródła
Streszczenie:
AbstractNTRU cryptosystem is a new public key cryptosystem based on lattice hard problem proposed in 1996 by three digit theorists Hoffstein, Piper and Silverman of Brown University in the United States. The essence of NTRU cryptographic design is the generalization of RSA on polynomials, so it is called the cryptosystem based on polynomial rings. Its main feature is that the key generation is very simple, and the encryption and decryption algorithm is much faster than the commonly used RSA and elliptic curve cryptography. In particular, NTRU can resist quantum computing attacks and is conside
Style APA, Harvard, Vancouver, ISO itp.
10

Kanda, Guard, Alexander O. A. Antwi, and Kwangki Ryoo. "Hardware Architecture Design of AES Cryptosystem with 163-Bit Elliptic Curve." In Lecture Notes in Electrical Engineering. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1328-8_55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Elliptic curve elgamal cryptosystem"

1

Yang, Ziyao, and Yuan Liu. "Design and Application of an International Trade Trading Platform Based on ElGamal and Elliptic Curve Cryptography." In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS). IEEE, 2024. http://dx.doi.org/10.1109/iacis61494.2024.10721931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

M. GHADI, Dua. "MODIFICATION OF ELGAMAL ELLIPTIC CURVE CRYPTOSYSTEM ALGORITHM." In VI.International Scientific Congress of Pure,Applied and Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress6-8.

Pełny tekst źródła
Streszczenie:
The importance of data encryption has grown dramatically, especially in terms of personal data. The elliptic curve cryptosystem is the major solution for data security because it has become more prevalent. Security and privacy are required to ensure the data has recently generated much concern within the research community. This paper's objective is to obtain a complicated and secure ciphertext and make cryptanalysis difficult. In this paper, we modified the El-Gamal Elliptic Curve Cryptosystem (ECC) by producing new secret keys for encrypting data and embedding messages by using Discrete Loga
Style APA, Harvard, Vancouver, ISO itp.
3

Fu Minfeng and Chen Wei. "Elliptic curve cryptosystem ElGamal encryption and transmission scheme." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5620105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wong, Tze Jin, Mohd Rushdan Md Said, Mohamed Othman, and Lee Feng Koo. "A Lucas based cryptosystem analog to the ElGamal cryptosystem and elliptic curve cryptosystem." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Narn-Yih, Zih-Ling Chen, and Fu-Kun Chen. "Cloud Server Aided Computation for ElGamal Elliptic Curve Cryptosystem." In 2013 IEEE 37th International Computer Software and Applications Conference Workshops (COMPSACW). IEEE, 2013. http://dx.doi.org/10.1109/compsacw.2013.7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Udin, Md Nizam, Suhaila Abd Halim, Mohd Idris Jayes, and Hailiza Kamarulhaili. "Application of message embedding technique in ElGamal Elliptic Curve Cryptosystem." In 2012 International Conference on Statistics in Science, Business and Engineering (ICSSBE2012). IEEE, 2012. http://dx.doi.org/10.1109/icssbe.2012.6396578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rachmawati, Dian, Mohammad Andri Budiman, and Muhammad Ishan Wardhono. "Hybrid Cryptosystem for Image Security by Using Hill Cipher 4x4 and ElGamal Elliptic Curve Algorithm." In 2018 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). IEEE, 2018. http://dx.doi.org/10.1109/comnetsat.2018.8684121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Elhassani, M., A. Chillali, and A. Mouhib. "Elliptic curve and Lattice cryptosystem." In 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). IEEE, 2019. http://dx.doi.org/10.1109/isacs48493.2019.9068885.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bin Yu. "Establishement of elliptic curve cryptosystem." In 2010 IEEE International Conference on Information Theory and Information Security (ICITIS). IEEE, 2010. http://dx.doi.org/10.1109/icitis.2010.5689767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ali, Sk Subidh, and Ozgur Sinanoglu. "Scan attack on Elliptic Curve Cryptosystem." In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). IEEE, 2015. http://dx.doi.org/10.1109/dft.2015.7315146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!