Gotowa bibliografia na temat „EMOLIS Dataset”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „EMOLIS Dataset”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "EMOLIS Dataset"
Saadi, Wafa, Fatima Zohra Laallam, Messaoud Mezati, Dikra Louiza Youmbai i Nour Elhouda Messaoudi. "Enhancing emotion detection on Twitter: an ensemble clustering approach utilizing emojis and keywords across multilingual datasets". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, nr 2 (13.11.2024): e10548. http://dx.doi.org/10.54021/seesv5n2-522.
Pełny tekst źródłaCzęstochowska, Justyna, Kristina Gligorić, Maxime Peyrard, Yann Mentha, Michał Bień, Andrea Grütter, Anita Auer, Aris Xanthos i Robert West. "On the Context-Free Ambiguity of Emoji". Proceedings of the International AAAI Conference on Web and Social Media 16 (31.05.2022): 1388–92. http://dx.doi.org/10.1609/icwsm.v16i1.19393.
Pełny tekst źródłaArjun Kuruva i Dr. C. Nagaraju. "A Robust Hybrid Model for Text and Emoji Sentiment Analysis: Leveraging BERT and Pre-trained Emoji Embeddings". Bioscan 20, nr 1 (24.01.2025): 186–91. https://doi.org/10.63001/tbs.2025.v20.i01.pp186-191.
Pełny tekst źródłaNakonechnyi, O. G., O. A. Kapustian, Iu M. Shevchuk, M. V. Loseva i O. Yu Kosukha. "A intellectual system of analysis of reactions to news based on data from Telegram channels". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, nr 3 (2022): 55–61. http://dx.doi.org/10.17721/1812-5409.2022/3.7.
Pełny tekst źródłaPeng, Jiao, Yue He, Yongjuan Chang, Yanyan Lu, Pengfei Zhang, Zhonghong Ou i Qingzhi Yu. "A Social Media Dataset and H-GNN-Based Contrastive Learning Scheme for Multimodal Sentiment Analysis". Applied Sciences 15, nr 2 (10.01.2025): 636. https://doi.org/10.3390/app15020636.
Pełny tekst źródłaHauthal, Eva, Alexander Dunkel i Dirk Burghardt. "Emojis as Contextual Indicants in Location-Based Social Media Posts". ISPRS International Journal of Geo-Information 10, nr 6 (12.06.2021): 407. http://dx.doi.org/10.3390/ijgi10060407.
Pełny tekst źródłaAlmalki, Jameel. "A machine learning-based approach for sentiment analysis on distance learning from Arabic Tweets". PeerJ Computer Science 8 (26.07.2022): e1047. http://dx.doi.org/10.7717/peerj-cs.1047.
Pełny tekst źródłaMadderi Sivalingam, Saravanan, Smitha Ponnaiyan Sarojam, Malathi Subramanian i Kalachelvi Thulasingam. "A new mining and decoding framework to predict expression of opinion on social media emoji’s using machine learning models". IAES International Journal of Artificial Intelligence (IJ-AI) 13, nr 4 (1.12.2024): 5005. http://dx.doi.org/10.11591/ijai.v13.i4.pp5005-5012.
Pełny tekst źródłaAnu Kiruthika M. i Angelin Gladston. "Implementation of Recurrent Network for Emotion Recognition of Twitter Data". International Journal of Social Media and Online Communities 12, nr 1 (styczeń 2020): 1–13. http://dx.doi.org/10.4018/ijsmoc.2020010101.
Pełny tekst źródłaChen, Zhenpeng, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei i Xuanzhe Liu. "Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data". ACM Transactions on Software Engineering and Methodology 30, nr 2 (marzec 2021): 1–48. http://dx.doi.org/10.1145/3424308.
Pełny tekst źródłaRozprawy doktorskie na temat "EMOLIS Dataset"
Lerch, Soëlie. "Suggestion de dessins animés par similarité émotionnelle : Approches neuronales multimodales combinant contenus et données physiologiques". Electronic Thesis or Diss., Toulon, 2024. http://www.theses.fr/2024TOUL0005.
Pełny tekst źródłaThe general framework of this thesis related to the study of feelings and emotions to better understand their impacts and interactions, thereby improving human-machine communication. An author can convey feelings and emotions in a written message or through a video and its characters. These emotions and feelings are then interpreted by a reader or a viewer, who, in turn, experiences emotions. Identifying these emotions is subjective and not always easy. For example, was a viewer surprised? Were they scared? Or both? How can we find videos that would allow them to feel the same emotions again? To address such questions, our contributions leverage various modalities in a computational analysis—considering both the communication medium's content and the physiological reactions of recipients—to detect and identify emotions and to suggest emotionally similar content.Our first research question concerns the modeling of feelings and emotions to create efficient models for sentiment and emotion detection. To this end, we study different data representations for emotion prediction by utilizing only the textual modality. Various supervised approaches are implemented, which do not require lexicons.Since the textual modality alone can be ambiguous, we examine different data representations for emotion prediction from a multimodal perspective. For this purpose, we create the EMOLIS Dataset, consisting of cartoons annotated with emotions and accompanied by viewers' physiological signals. On one hand, we use the text modality to capture semantic content via dialogue transcription, the image modality for characters' facial expressions, and the audio modality for characters' voices. On the other hand, we utilize physiological signals such as electrocardiograms, respiration, and eye movements of viewers. These different modalities allow us to consider both the emotion conveyed by the video content and the emotions experienced by viewers.Then, we use this dataset to evaluate different models for identifying emotions contained within the EMOLIS Dataset. Two approaches are experimented with, depending on whether representations of modalities are merged late or early in the classification process.Finally, we analyze the impact of incorporating emotions and feelings into cartoon recommendations. We describe the EMOLIS App software, which suggests cartoons from the EMOLIS Dataset. This suggestion is based on calculating similarities between emotional and multimodal matrices as well as physiological signals.In the future, EMOLIS App could potentially be used in cognitive-behavioral therapies for individuals on the autism spectrum who may have difficulty identifying and verbalizing their emotions
Części książek na temat "EMOLIS Dataset"
Gupta, Shelley, Archana Singh i Jayanthi Ranjan. "An Online Document Emoji-Based Classification Using Twitter Dataset". W Proceedings of Data Analytics and Management, 409–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6285-0_33.
Pełny tekst źródłaMartín Gascón, Beatriz. "Chapter 11. Irony in American-English tweets". W Current Issues in Linguistic Theory, 197–217. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/cilt.366.11mar.
Pełny tekst źródłaDas, Ankit, i Saubhik Bandyopadhyay. "Analysis of Oversampling and Its Impact on an Imbalanced Dataset for Emoji Prediction from Tweets Using Machine Learning Techniques". W Lecture Notes in Networks and Systems, 297–308. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-8476-9_21.
Pełny tekst źródłaHartman, Ryan, S. M. Mahdi Seyednezhad, Diego Pinheiro, Josemar Faustino i Ronaldo Menezes. "Entropy in Network Community as an Indicator of Language Structure in Emoji Usage: A Twitter Study Across Various Thematic Datasets". W Studies in Computational Intelligence, 328–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05411-3_27.
Pełny tekst źródłaAnu Kiruthika M. i Angelin Gladston. "Implementation of Recurrent Network for Emotion Recognition of Twitter Data". W Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines, 398–411. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-6303-1.ch022.
Pełny tekst źródłaDoan, Minh Tri, Minh Phuong Dam, Tram T. Doan, Hung Nguyen i Binh T. Nguyen. "Sentiment Classification in Mobile Gaming Reviews: Customized Transformer Models with Emojis Retained". W Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240384.
Pełny tekst źródłaWhitney, Jessica, Marisa Hultgren, Murray Eugene Jennex, Aaron Elkins i Eric Frost. "Using Knowledge Management and Machine Learning to Identify Victims of Human Sex Trafficking". W Knowledge Management, Innovation, and Entrepreneurship in a Changing World, 360–89. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2355-1.ch014.
Pełny tekst źródłaGeethanjali, R., i Dr A. Valarmathi. "SENTIMENT FUSION: LEVERAGING BIG DATA AND DEEP LEARNING FOR MULTIMODAL SENTIMENT ANALYSIS IN SOCIAL NETWORKS". W Futuristic Trends in Computing Technologies and Data Sciences Volume 3 Book 3, 193–206. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bfct3p5ch1.
Pełny tekst źródłaStreszczenia konferencji na temat "EMOLIS Dataset"
Ghafourian, Sarvenaz, Ramin Sharifi i Amirali Baniasadi. "Facial Emotion Recognition in Imbalanced Datasets". W 9th International Conference on Artificial Intelligence and Applications (AIAPP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120920.
Pełny tekst źródłaKosti, Ronak, Jose M. Alvarez, Adria Recasens i Agata Lapedriza. "EMOTIC: Emotions in Context Dataset". W 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.285.
Pełny tekst źródłaHayati, Shirley Anugrah, Aditi Chaudhary, Naoki Otani i Alan W. Black. "Dataset Analysis and Augmentation for Emoji-Sensitive Irony Detection". W Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-5527.
Pełny tekst źródłaHakami, Shatha Ali A., Robert Hendley i Phillip Smith. "ArSarcasMoji Dataset: The Emoji Sentiment Roles in Arabic Ironic Contexts". W Proceedings of ArabicNLP 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.arabicnlp-1.18.
Pełny tekst źródłaZhang, Tianlin, Kailai Yang, Shaoxiong Ji, Boyang Liu, Qianqian Xie i Sophia Ananiadou. "SuicidEmoji: Derived Emoji Dataset and Tasks for Suicide-Related Social Content". W SIGIR 2024: The 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626772.3657852.
Pełny tekst źródłaCui, Chenye, Yi Ren, Jinglin Liu, Feiyang Chen, Rongjie Huang, Ming Lei i Zhou Zhao. "EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional Text-to-Speech Model". W Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-1148.
Pełny tekst źródłaJandre, Frederico, Gabriel Motta Ribeiro i João Vitor Silva. "Could large language models estimate valence of words? A small ablation study". W Congresso Brasileiro de Inteligência Computacional. SBIC, 2023. http://dx.doi.org/10.21528/cbic2023-148.
Pełny tekst źródłaKirk, Hannah, Bertie Vidgen, Paul Rottger, Tristan Thrush i Scott Hale. "Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-Based Hate". W Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.naacl-main.97.
Pełny tekst źródłaKeinan, Ron, Dan Bouhnik i Efraim A Margalit. "Emotional Analysis in Hebrew Texts: Enhancing Machine Learning with Psychological Feature Lexicons [Abstract]". W InSITE 2024: Informing Science + IT Education Conferences. Informing Science Institute, 2024. http://dx.doi.org/10.28945/5279.
Pełny tekst źródła