Gotowa bibliografia na temat „Energy-based devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Energy-based devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Energy-based devices"
Muggenthaler, Frank. "„Energy-based devices“." Journal für Ästhetische Chirurgie 13, no. 3 (2020): 81. http://dx.doi.org/10.1007/s12631-020-00232-y.
Pełny tekst źródłaAlshiek, Jonia, Bobby Garcia, Vatche Minassian, et al. "Vaginal Energy-Based Devices." Female Pelvic Medicine & Reconstructive Surgery 26, no. 5 (2020): 287–98. http://dx.doi.org/10.1097/spv.0000000000000872.
Pełny tekst źródłaKaliappan, Vishnu Kumar, Aravind Babu Lalpet Ranganathan, Selvaraju Periasamy, et al. "Energy-Efficient Offloading Based on Efficient Cognitive Energy Management Scheme in Edge Computing Device with Energy Optimization." Energies 15, no. 21 (2022): 8273. http://dx.doi.org/10.3390/en15218273.
Pełny tekst źródłaShiyanbola, Joseph. "Semiconductor Based Power Devices for Sustainable Energy." ALSYSTECH Journal of Education Technology 3, no. 2 (2025): 245–55. https://doi.org/10.58578/alsystech.v3i2.5426.
Pełny tekst źródłaYang, Heejun. "(Invited) Energy Intelligent Computing Devices Based on 2D Materials." ECS Meeting Abstracts MA2024-02, no. 35 (2024): 2464. https://doi.org/10.1149/ma2024-02352464mtgabs.
Pełny tekst źródłaYao, Tao, Yulong Wang, Zhihua Wang, Tongxian Li, and Zhipeng Tan. "Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism." Energies 15, no. 5 (2022): 1670. http://dx.doi.org/10.3390/en15051670.
Pełny tekst źródłaAlexandrov, Dmitry A., Irina V. Martirosian, Sergey V. Pokrovskii, Victoria V. Zaletkina, and Igor A. Rudnev. "Energy capacity and energy losses of inductive energy storage device based on composite HTS tapes." Modern Transportation Systems and Technologies 10, no. 2 (2024): 215–30. http://dx.doi.org/10.17816/transsyst632274.
Pełny tekst źródłaHeitmiller, Kerry, Christina Ring, Nazanin Saedi, and Brian Biesman. "Nonsurgical Light and Energy–Based Devices." Facial Plastic Surgery Clinics of North America 29, no. 2 (2021): 323–34. http://dx.doi.org/10.1016/j.fsc.2021.01.007.
Pełny tekst źródłaPathoulas, James T., Gretchen Bellefeuille, Ora Raymond, Bisma Khalid, and Ronda S. Farah. "Energy-based Devices for Hair Loss." Dermatologic Clinics 39, no. 3 (2021): 447–61. http://dx.doi.org/10.1016/j.det.2021.04.002.
Pełny tekst źródłaWu, Che-Wei, Antonio Giacomo Rizzo, Vincenzo Bartolo, et al. "Energy based devices for transoral thyroidectomy." Annals of Thyroid 3 (February 10, 2018): 4. http://dx.doi.org/10.21037/aot.2018.01.02.
Pełny tekst źródłaRozprawy doktorskie na temat "Energy-based devices"
Zegeye, Wondimu, and Lawrence Lee. "LOCALIZATION OF MEDICAL DEVICES BASED ON BLUETOOTH LOW ENERGY (BTLE)." International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/626971.
Pełny tekst źródłaWang, Xiangjun. "Surface Energy Patterning and Optoelectronic Devices Based on Conjugated Polymers." Doctoral thesis, Linköpings universitet, Biomolekylär och Organisk Elektronik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7065.
Pełny tekst źródłaBordallo, López M. (Miguel). "Designing for energy-efficient vision-based interactivity on mobile devices." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526206721.
Pełny tekst źródłaWang, Xiangjun. "Surface energy patterning and optoelectric devices based on conjugated polymers /." Linköping : Linköping University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7065.
Pełny tekst źródłaPesce, Arianna. "3D printing of ceramic-based solid state energy conversion devices." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673218.
Pełny tekst źródłaAlexander, BXS. "ROTOR POSITION AND VIBRATION CONTROL FOR AEROSPACE FLYWHEEL ENERGY STORAGE DEVICES AND OTHER VIBRATION BASED DEVICES." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1218818393.
Pełny tekst źródłaKrishna, Prasad Rahul. "Feasibility of polyaniline electrodes for lithium titanate based energy storage devices." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35547.
Pełny tekst źródłaHallam, Philip Mark. "Next generation screen-printed energy-storage devices based on carbon nanomaterials." Thesis, Manchester Metropolitan University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.592029.
Pełny tekst źródłaNabid, Neda. "Performance-based optimisation of friction energy dissipation devices in RC structures." Thesis, University of Sheffield, 2019. http://etheses.whiterose.ac.uk/7578/.
Pełny tekst źródłaAl, Haik Mohammad Yousef. "Nanoparticle-based Organic Energy Storage with Harvesting Systems." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79815.
Pełny tekst źródłaKsiążki na temat "Energy-based devices"
bin Mohd Yusoff, A. Rashid, ed. Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.
Pełny tekst źródłaKong, Biao, Hongbin Xu, Lei Xie, and Shan Zhou. Functional Mesoporous Carbon-Based Film Devices for Energy Systems. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7498-6.
Pełny tekst źródłaPonnada, Srikanth, and Susmita Naskar. Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices. CRC Press, 2024. http://dx.doi.org/10.1201/9781003404729.
Pełny tekst źródłaKazeykin, Valeriy, and Vladimir Tolstolugov. Theory and practice of implementation of high energy efficient technologies in construction based on Thermaron heat generators. INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1146805.
Pełny tekst źródłaLuchinin, Viktor, and Sergey Il'in. Biointerface. Conformal nanoenergy. INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2049717.
Pełny tekst źródłaLi, Yuan. Three Dimensional Solar Cells Based on Optical Confinement Geometries. Springer New York, 2013.
Znajdź pełny tekst źródłaYusoff, A. Rashid bin Mohd. Graphene-Based Energy Devices. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaA. Rashid bin Mohd Yusoff. Graphene-Based Energy Devices. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaA. Rashid bin Mohd Yusoff. Graphene-Based Energy Devices. Wiley & Sons, Limited, John, 2015.
Znajdź pełny tekst źródłaA. Rashid bin Mohd Yusoff. Graphene-Based Energy Devices. Wiley-VCH Verlag GmbH, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Energy-based devices"
Liu, Wei-Ren. "Graphene-Based Energy Devices." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch3.
Pełny tekst źródłaJun, Seong C. "Fundamental of Graphene." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch1.
Pełny tekst źródłaWang, Hou, and Xingzhong Yuan. "Graphene-Based Devices for Hydrogen Storage." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch10.
Pełny tekst źródłaLiu, Minmin, and Wei Chen. "Graphene-Supported Metal Nanostructures with Controllable Size and Shape as Advanced Electrocatalysts for Fuel Cells." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch11.
Pełny tekst źródłaZhang, Yezhen, and Jian Shan Ye. "Graphene-Based Microbial Fuel Cells." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch12.
Pełny tekst źródłaXiao, Li, and Zhen He. "Application of Graphene-Based Materials to Improve Electrode Performance in Microbial Fuel Cells." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch13.
Pełny tekst źródłabin Mohd Yusoff, A. Rashid. "Applications of Graphene and Its Derivative in Enzymatic Biofuel Cells." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch14.
Pełny tekst źródłaLee, Seung J., and A. Rashid bin Mohd Yusoff. "Graphene and Its Derivatives for Highly Efficient Organic Photovoltaics." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch15.
Pełny tekst źródłaMat-Teridi, Mohd A., Mohd A. Ibrahim, Norasikin Ahmad-Ludin, Siti Nur Farhana Mohd Nasir, Mohamad Yusof Sulaiman, and Kamaruzzaman Sopian. "Graphene as Sensitizer." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch16.
Pełny tekst źródłaWang, Ronghua, Miaomiao Liu, and Jing Sun. "Graphene-Based Electrodes for Lithium Ion Batteries." In Graphene-based Energy Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690312.ch2.
Pełny tekst źródłaStreszczenia konferencji na temat "Energy-based devices"
Mahdi Mudassir, Syed Mujtaba, and Umme Salma. "Gradient Descent-Based Optimization of Hybrid Renewable Energy Systems for Enhanced Stability and Cost Efficiency." In 2025 Devices for Integrated Circuit (DevIC). IEEE, 2025. https://doi.org/10.1109/devic63749.2025.11012215.
Pełny tekst źródłaPalanisamy, Shyamala, Wei Wei, and Mimi Xie. "Energy-Efficient Persistently Secure Block-Based Differential Checkpointing for Energy Harvesting Devices." In 2025 26th International Symposium on Quality Electronic Design (ISQED). IEEE, 2025. https://doi.org/10.1109/isqed65160.2025.11014468.
Pełny tekst źródłaSahu, Mansi, Atreyi Pramanik, Gotte Ranjith Kumar, and Santosh Reddy Addula. "Revolutionizing Renewable Energy: AI-Based Solutions for Sustainable Biofuel." In 2024 International Conference on Smart Devices (ICSD). IEEE, 2024. http://dx.doi.org/10.1109/icsd60021.2024.10751278.
Pełny tekst źródłaXie, Dongri, Wenjun You, and Danyang Ao. "Energy Management Strategy of Photovoltaic Hybrid Energy Storage System Based on Optimal Power Distribution." In 2024 International Conference on Electronics and Devices, Computational Science (ICEDCS). IEEE, 2024. https://doi.org/10.1109/icedcs64328.2024.00152.
Pełny tekst źródłaWei, Wei, Jishnu Banerjee, Sahidul Islam, Chen Pan, and Mimi Xie. "Energy-aware Incremental OTA Update for Flash-based Batteryless IoT Devices." In 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2024. http://dx.doi.org/10.1109/isvlsi61997.2024.00021.
Pełny tekst źródłaChen, Yong P. "Topological insulator-based energy efficient devices." In SPIE Defense, Security, and Sensing, edited by Thomas George, M. Saif Islam, and Achyut Dutta. SPIE, 2012. http://dx.doi.org/10.1117/12.920513.
Pełny tekst źródłaAnand, Ashutosh, and Sudip Kundu. "Design of Mems Based Piezoelectric Energy Harvester for Pacemaker." In 2019 Devices for Integrated Circuit (DevIC). IEEE, 2019. http://dx.doi.org/10.1109/devic.2019.8783311.
Pełny tekst źródłaRivera, Monica, Daniel P. Cole, and Mark Bundy. "Electrical Properties of Carbon Nanomaterial-Based Structural-Energy Storage Devices." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5169.
Pełny tekst źródłaLindquist, Robert G., Yang Zou, Jun Namkung, and Dan Ke. "Monitoring anchoring energy in LC-based sensors." In SPIE Photonic Devices + Applications, edited by Iam Choon Khoo. SPIE, 2011. http://dx.doi.org/10.1117/12.893668.
Pełny tekst źródłaOzgit, D., P. Hiralal, and G. A. J. Amaratunga. "Flexible energy storage devices based on nanomaterials." In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2016. http://dx.doi.org/10.1109/nano.2016.7751578.
Pełny tekst źródłaRaporty organizacyjne na temat "Energy-based devices"
Hudgins, Andrew P., Bethany F. Sparn, Xin Jin, and Brian Seal. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1422887.
Pełny tekst źródłaTeng, Henry, and Khalid Mosalam. Long-Term Monitoring of Bridge Settlements using Vision-Based Embedded System. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/apri8198.
Pełny tekst źródłaElmgren, Karson, Ashwin Acharya, and Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, 2021. http://dx.doi.org/10.51593/20210003.
Pełny tekst źródłaRaengthon, Natthaphon. Cation vacancy defect in modified barium titanate ferroelectric ceramics. Chulalongkorn University, 2021. https://doi.org/10.58837/chula.res.2021.22.
Pełny tekst źródłaTARAKANOVA, V., A. ROMANENKO, and O. PRANTSUZ. MEASURES TO PREVENT POSSIBLE EMERGENCIES AT THE ENTERPRISE. Science and Innovation Center Publishing House, 2022. http://dx.doi.org/10.12731/2070-7568-2022-11-1-4-32-43.
Pełny tekst źródłaPasupuleti, Murali Krishna. 2D Quantum Materials for Next-Gen Semiconductor Innovation. National Education Services, 2025. https://doi.org/10.62311/nesx/rrvi425.
Pełny tekst źródłaBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011558.
Pełny tekst źródłaBrosh, Arieh, David Robertshaw, Yoav Aharoni, Zvi Holzer, Mario Gutman, and Amichai Arieli. Estimation of Energy Expenditure of Free Living and Growing Domesticated Ruminants by Heart Rate Measurement. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580685.bard.
Pełny tekst źródłaMulligan, Cian. Measuring Green Jobs in Saudi Arabia: Saudis in Green Occupations. King Abdullah Petroleum Studies and Research Center, 2024. http://dx.doi.org/10.30573/ks--2024-dp28.
Pełny tekst źródłaWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/ytgv8834.
Pełny tekst źródła