Gotowa bibliografia na temat „Environmental health Data processing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Environmental health Data processing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Environmental health Data processing"
Ivanov, Alexander, i Alexander Platov. "Environmental monitoring based on data processing of Internet of Things". E3S Web of Conferences 136 (2019): 01041. http://dx.doi.org/10.1051/e3sconf/201913601041.
Pełny tekst źródłaCummings, Stuart W. "Distributed Databases for Clinical Data Processing". Drug Information Journal 27, nr 4 (październik 1993): 949–56. http://dx.doi.org/10.1177/009286159302700403.
Pełny tekst źródłaPimazzoni, Monica. "Global Data Management: A Winning Approach to Clinical Data Processing". Drug Information Journal 32, nr 2 (kwiecień 1998): 569–71. http://dx.doi.org/10.1177/009286159803200230.
Pełny tekst źródłaWoods, Valerie. "Musculoskeletal disorders and visual strain in intensive data processing workers". Occupational Medicine 55, nr 2 (1.03.2005): 121–27. http://dx.doi.org/10.1093/occmed/kqi029.
Pełny tekst źródłaJia, Xiao Yu, i Tao Li. "Data Processing in Environmental Performance of Building Systems Applied in Residential Design". Advanced Materials Research 978 (czerwiec 2014): 145–48. http://dx.doi.org/10.4028/www.scientific.net/amr.978.145.
Pełny tekst źródłaArisetty, Murty. "A Team-Based Approach to Clinical Data Processing". Drug Information Journal 19, nr 1 (styczeń 1985): 81–84. http://dx.doi.org/10.1177/009286158501900113.
Pełny tekst źródłaLeighton, Charles C. "Clinical Data Processing in Retrospect and in Prospect". Drug Information Journal 20, nr 1 (styczeń 1986): 7–15. http://dx.doi.org/10.1177/009286158602000103.
Pełny tekst źródłaGillum, Terry L., Robert H. George i Jack E. Leitmeyer. "An Autoencoder for Clinical and Regulatory Data Processing". Drug Information Journal 29, nr 1 (styczeń 1995): 107–13. http://dx.doi.org/10.1177/009286159502900115.
Pełny tekst źródłaHrzic, Rok, Timo Clemens, Daan Westra i Helmut Brand. "Comparability in Cross-National Health Research Using Insurance Claims Data: The Cases of Germany and The Netherlands". Das Gesundheitswesen 82, S 01 (19.11.2019): S83—S90. http://dx.doi.org/10.1055/a-1005-6792.
Pełny tekst źródłaKraft, Robin, Ferdinand Birk, Manfred Reichert, Aniruddha Deshpande, Winfried Schlee, Berthold Langguth, Harald Baumeister, Thomas Probst, Myra Spiliopoulou i Rüdiger Pryss. "Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform". Sensors 20, nr 12 (18.06.2020): 3456. http://dx.doi.org/10.3390/s20123456.
Pełny tekst źródłaRozprawy doktorskie na temat "Environmental health Data processing"
Wilmot, Peter Nicholas. "Modelling cooling tower risk for Legionnaires' Disease using Bayesian Networks and Geographic Information Systems". Title page, contents and conclusion only, 1999. http://web4.library.adelaide.edu.au/theses/09SIS.M/09sismw744.pdf.
Pełny tekst źródłaChitondo, Pepukayi David Junior. "Data policies for big health data and personal health data". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2479.
Pełny tekst źródłaHealth information policies are constantly becoming a key feature in directing information usage in healthcare. After the passing of the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and the Affordable Care Act (ACA) passed in 2010, in the United States, there has been an increase in health systems innovations. Coupling this health systems hype is the current buzz concept in Information Technology, „Big data‟. The prospects of big data are full of potential, even more so in the healthcare field where the accuracy of data is life critical. How big health data can be used to achieve improved health is now the goal of the current health informatics practitioner. Even more exciting is the amount of health data being generated by patients via personal handheld devices and other forms of technology that exclude the healthcare practitioner. This patient-generated data is also known as Personal Health Records, PHR. To achieve meaningful use of PHRs and healthcare data in general through big data, a couple of hurdles have to be overcome. First and foremost is the issue of privacy and confidentiality of the patients whose data is in concern. Secondly is the perceived trustworthiness of PHRs by healthcare practitioners. Other issues to take into context are data rights and ownership, data suppression, IP protection, data anonymisation and reidentification, information flow and regulations as well as consent biases. This study sought to understand the role of data policies in the process of data utilisation in the healthcare sector with added interest on PHRs utilisation as part of big health data.
Yang, Bin, i 杨彬. "A novel framework for binning environmental genomic fragments". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45789344.
Pełny tekst źródłaGigandet, Katherine M. "Processing and Interpretation of Illinois Basin Seismic Reflection Data". Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401309913.
Pełny tekst źródłaPerovich, Laura J. (Laura Jones). "Data Experiences : novel interfaces for data engagement using environmental health data". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95612.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-81).
For the past twenty years, the data visualization movement has reworked the way we engage with information. It has brought fresh excitement to researchers and reached broad audiences. But what comes next for data? I seek to create example "Data Experiences" that will contribute to developing new spaces of information engagement. Using data from Silent Spring Institute's environmental health studies as a test case, I explore Data Experiences that are immersive, interactive, and aesthetic. Environmental health datasets are ideal for this application as they are highly relevant to the general population and have appropriate complexity. Dressed in Data will focus on the experience of an individual with her/his own environmental health data while BigBarChart focuses on the experience of the community with the overall dataset. Both projects seek to present opportunities for nontraditional learning, community relevance, and social impact.
by Laura J. Perovich.
S.M.
Ponsimaa, P. (Petteri). "Discovering value for health with grocery shopping data". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201605221849.
Pełny tekst źródłaAdu-Prah, Samuel. "GEOGRAPHIC DATA MINING AND GEOVISUALIZATION FOR UNDERSTANDING ENVIRONMENTAL AND PUBLIC HEALTH DATA". OpenSIUC, 2013. https://opensiuc.lib.siu.edu/dissertations/657.
Pełny tekst źródłaKersten, Ellen Elisabeth. "Spatial Triage| Data, Methods, and Opportunities to Advance Health Equity". Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686356.
Pełny tekst źródłaThis dissertation examines whether spatial measures of health determinants and health outcomes are being used appropriately and effectively to improve the health of marginalized populations in the United States. I concentrate on three spatial measures that have received significant policy and regulatory attention in California and nationally: access to healthful foods, climate change, and housing quality. I find that measures of these health determinants have both significant limitations and unrealized potential for addressing health disparities and promoting health equity.
I define spatial triage as a process of using spatial data to screen or select place-based communities for targeted investments, policy action, and/or regulatory attention. Chapter 1 describes the historical context of spatial triage and how it relates to ongoing health equity research and policy. In Chapter 2, I evaluate spatial measures of community nutrition environments by comparing data from in-person store surveys against data from a commercial database. I find that stores in neighborhoods with higher population density or higher percentage of people of color have lower availability of healthful foods and that inaccuracies in commercial databases may produce biased measures of healthful food availability.
Chapter 3 focuses on spatial measures of climate change vulnerability. I find that currently used spatial measures of "disadvantaged communities" ignore many important factors, such as community assets, region-specific risks, and occupation-based hazards that contribute to place-based vulnerability. I draw from examples of successful actions by community-based environmental justice organizations and reframe "disadvantaged" communities as sites of solutions where innovative programs are being used to simultaneously address climate mitigation, adaptation, and equity goals.
In Chapter 4, I combine electronic health records, public housing locations, and census data to evaluate patterns of healthcare utilization and health outcomes for low-income children in San Francisco. I find that children who live in redeveloped public housing are less likely to have more than one acute care hospital visit within a year than children who live in older, traditional public housing. These results demonstrate how integrating patient-level data across hospitals and with data from other sectors can identify new types of place-based health disparities. Chapter 5 details recommendations for analytic, participatory, and cross-sector approaches to guide the development and implementation of more effective health equity research and policy.
Ling, Meng-Chun. "Senior health care system". CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2785.
Pełny tekst źródłaDulaney, D. R., Kurt J. Maier i Phillip R. Scheuerman. "Data Requirements for Developing Effective Pathogen TMDLs". Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/2938.
Pełny tekst źródłaKsiążki na temat "Environmental health Data processing"
Bonnyns, E. Enregistrement des résultats d'analyse des précipitations: Aspects informatiques. Bruxelles: Ministère de la santé publique et de la famille, Institut d'hygiène et dépidémiologie, 1985.
Znajdź pełny tekst źródłaBasher, Mian M. Abul, i Rajshahi University. Department of Statistics, red. International Conference on Statistical Data Mining for Bioinformatics, Health, Agriculture and Environment, 21-24 December, 2012: Proceedings. [Dhaka]: Higher Education Quality Enhancement Program, 2012.
Znajdź pełny tekst źródłaOffice, General Accounting. International environment: U.S. funding of environmental programs and activities. Washington, D.C: The Office, 1996.
Znajdź pełny tekst źródłaIfiyenia, Kececioglu, Murthy Jayathi i American Society of Mechanical Engineers. Heat Division., red. Adaptive computional methods in environmental transport processes: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York, N.Y: American Society of Mechanical Engineers, 1992.
Znajdź pełny tekst źródłaE, Keller Paul, red. Applications of neural networks in evironment, energy, and health: Proceedings of the 1995 Workshop on Environmental and Energy Applications of Neural Networks, Richland, Washington, USA, 30-31 March 1995. Singapore: World Scientific, 1996.
Znajdź pełny tekst źródłaWorkshop on Environmental and Energy Applications of Neural Networks (1995 Richland, Wash.). Applications of neural networks in evironment, energy, and health: Proceedings of the 1995 Workshop on Environmental and Energy Applicatins of Neural Networks, Pacific Northwest National Laboratory, Richland, Washington, USA, 30-31 March 1995. Singapore: World Scientific, 1996.
Znajdź pełny tekst źródłaOffice, General Accounting. International environment: Strengthening the implementation of environmental agreements : report to Congressional requestors. Washington, D.C: The Office, 1992.
Znajdź pełny tekst źródłaMontana. Legislature. Office of the Legislative Auditor. Performance audit report: Air quality program, Department of Health and Environmental Sciences. Helena, Mont: The Office, 1994.
Znajdź pełny tekst źródłaUnited States. Congress. House. Committee on Commerce. Subcommittee on Health and the Environment. Y2K and medical devices: Screening for the Y2K bug : joint hearing before the Subcommittees on Health and Environment and Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Sixth Congress, first session, May 25, 1999. Washington: U.S. G.P.O., 1999.
Znajdź pełny tekst źródłaUnited States. Congress. House. Committee on Commerce. Subcommittee on Oversight and Investigations., red. Y2K and medical devices: Screening for the Y2K bug : joint hearing before the Subcommittees on Health and Environment and Oversight and Investigations of the Committee on Commerce, House of Representatives, One Hundred Sixth Congress, first session, May 25, 1999. Washington: U.S. G.P.O., 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Environmental health Data processing"
Balter, Boris, M. Stal’naya i Victor Egorov. "Comparing Two Alternative Pollutant Dispersion Models and Actual Data within an Environmental Health Information Processing System (EHIPS)". W Modelling of Environmental Chemical Exposure and Risk, 151–64. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0884-6_14.
Pełny tekst źródłaAwange, Joseph. "Data Processing and Adjustment". W GNSS Environmental Sensing, 97–113. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58418-8_6.
Pełny tekst źródłaAwange, Joseph L. "Data Processing and Adjustment". W Environmental Science and Engineering, 91–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-88256-5_6.
Pełny tekst źródłaMalley, Brian, Daniele Ramazzotti i Joy Tzung-yu Wu. "Data Pre-processing". W Secondary Analysis of Electronic Health Records, 115–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43742-2_12.
Pełny tekst źródłaJaafar, Amine, Bruno Sareni i Xavier Roboam. "Mission and Environmental Data Processing". W Integrated Design by Optimization of Electrical Energy Systems, 1–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561812.ch1.
Pełny tekst źródłaBill, Ralf. "Spatial Data Processing in Environmental Information Systems". W Environmental Informatics, 53–73. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1443-3_4.
Pełny tekst źródłaRao, P. Krishna, Susan J. Holmes, Ralph K. Anderson, Jay S. Winston i Paul E. Lehr. "Satellite Data Product Processing". W Weather Satellites: Systems, Data, and Environmental Applications, 166–79. Boston, MA: American Meteorological Society, 1990. http://dx.doi.org/10.1007/978-1-944970-16-1_18.
Pełny tekst źródłaZhang, Kuan, i Xuemin Shen. "Privacy-Preserving Health Data Processing". W Wireless Networks, 81–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24717-5_5.
Pełny tekst źródłaKang, Myeongsu, i Jing Tian. "Machine Learning: Data Pre-processing". W Prognostics and Health Management of Electronics, 111–30. Chichester, UK: John Wiley and Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119515326.ch5.
Pełny tekst źródłaSchmidt, Henrik, A. B. Baggeroer, W. A. Kuperman i E. K. Scheer. "Robust Beamforming for Matched Field Processing Under Realistic Environmental Conditions". W Underwater Acoustic Data Processing, 427–31. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_47.
Pełny tekst źródłaStreszczenia konferencji na temat "Environmental health Data processing"
Liu, Miao, Junsheng Yu, Zhijiao Chen, Jinglin Guo i Jun Zhao. "Processing Technology of Massive Human Health Data Based on Hadoop". W 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmebc-16.2016.284.
Pełny tekst źródłaFenton, Kevin, i Steven Simske. "Engineering of an artificial intelligence safety data sheet document processing system for environmental, health, and safety compliance". W DocEng '21: ACM Symposium on Document Engineering 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469096.3474933.
Pełny tekst źródłaSingh, Ajay, Vincent Koomson, Jaewook Yu i Goldie Nejat. "A Self-Powered Wireless Health and Environment Monitoring System". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67051.
Pełny tekst źródłaFarreras-Alcover, Isaac, Jacob Egede Andersen i Preston Vineyard. "The Structural Health Monitoring System of the Governor Mario M. Cuomo Bridge". W IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.439.
Pełny tekst źródłaAlexakis, Haris, Andrea Franza, Sinan Acikgoz i Matthew J. DeJong. "Structural Health Monitoring of a masonry viaduct with Fibre Bragg Grating sensors". W IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1560.
Pełny tekst źródłaГегерь, Эмилия, Emilia Geger, Александр Подвесовский, Aleksandr Podvesovskiy, Сергей Кузьмин, Sergey Kuzmin, Виктория Толстенок i Viktoriya Tolstenok. "Methods for the Intelligent Analysis of Biomedical Data". W 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-308-311.
Pełny tekst źródłaOesch, Christopher, Ajay Mahajan, Lucas Utterback, Haricharan Padmanaban, Sanjeevi Chitikeshi i Fernando Figueroa. "Intelligent Sensors for Integrated Health Management Systems". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13576.
Pełny tekst źródłaGiantomassi, Andrea, Francesco Ferracuti, Alessandro Benini, Gianluca Ippoliti, Sauro Longhi i Antonio Petrucci. "Hidden Markov Model for Health Estimation and Prognosis of Turbofan Engines". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48174.
Pełny tekst źródłaSuharto, K. S. "Structural Health Monitoring of An Offshore Platform Trend of Corrosion and Marine Growth With Predictive Maintenance". W Digital Technical Conference. Indonesian Petroleum Association, 2020. http://dx.doi.org/10.29118/ipa20-se-424.
Pełny tekst źródłaTsai, Hanchung, Yung Y. Liu i James Shuler. "RFID Technology for Environmental Remediation and Radioactive Waste Management". W ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40218.
Pełny tekst źródłaRaporty organizacyjne na temat "Environmental health Data processing"
Marter, W. L., i L. R. Bauer. Defense waste processing facility (DWPF) environmental dosimetry data. Office of Scientific and Technical Information (OSTI), kwiecień 1990. http://dx.doi.org/10.2172/6439530.
Pełny tekst źródłaGautier, M. A. Health and environmental chemistry: analytical techniques, data management, and quality assurance. Volume 1. Office of Scientific and Technical Information (OSTI), maj 1986. http://dx.doi.org/10.2172/5107848.
Pełny tekst źródłaGautier, M. A. Health and environmental chemistry: Analytical techniques, data management, and quality assurance. Volume 1, Manual. Office of Scientific and Technical Information (OSTI), listopad 1993. http://dx.doi.org/10.2172/10136159.
Pełny tekst źródłaLackland, D. T., J. B. Dunbar i R. M. Jones. Geo-coding of health and demographic data as a resource for environmental incidents preparedness and response. Office of Scientific and Technical Information (OSTI), lipiec 1995. http://dx.doi.org/10.2172/88875.
Pełny tekst źródłaMallon, B., D. Layton, R. Fish, P. Hsieh, L. Hall, L. Perry i G. Snyder. Conventional weapons demilitarization: A health and environmental effects data base assessment: Propellants and their co-contaminants. Office of Scientific and Technical Information (OSTI), sierpień 1988. http://dx.doi.org/10.2172/5873712.
Pełny tekst źródłaHunter, M. R. Construction project data sheet for the environmental, safety and health upgrades: Phase 3 Program FY 1991 line item. Office of Scientific and Technical Information (OSTI), luty 1989. http://dx.doi.org/10.2172/115623.
Pełny tekst źródłaShinn, J. H., S. A. Martins, P. L. Cederwall i L. B. Gratt. Smokes and obscurants: A health and environmental effects data base assessment: A first-order, environmental screening and ranking of Army smokes and obscurants: Phase 1 report. Office of Scientific and Technical Information (OSTI), marzec 1985. http://dx.doi.org/10.2172/6068996.
Pełny tekst źródłaCook, R., S. Adams, J. Beauchamp, M. Bevelhimer, B. Blaylock, C. Brandt, C. Ford i in. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment. Environmental Restoration Program. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10117530.
Pełny tekst źródłaRencz, A. N., i I. M. Kettles. Presentations and recommendations from the workshop on the role of geochemical data in environmental and human health risk assessment, Halifax, 2010. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/287934.
Pełny tekst źródłaSmyre, J. L., M. E. Hodgson, B. W. Moll, A. L. King i Yang Cheng. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/204019.
Pełny tekst źródła