Spis treści
Gotowa bibliografia na temat „Epigenome editors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Epigenome editors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Epigenome editors"
Syding, Linn Amanda, Petr Nickl, Petr Kasparek i Radislav Sedlacek. "CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review". Cells 9, nr 4 (16.04.2020): 993. http://dx.doi.org/10.3390/cells9040993.
Pełny tekst źródłaNakamura, Muneaki, Alexis E. Ivec, Yuchen Gao i Lei S. Qi. "Durable CRISPR-Based Epigenetic Silencing". BioDesign Research 2021 (1.07.2021): 1–8. http://dx.doi.org/10.34133/2021/9815820.
Pełny tekst źródłaFang, Yongxing, Wladislaw Stroukov, Toni Cathomen i Claudio Mussolino. "Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors". International Journal of Molecular Sciences 21, nr 3 (25.01.2020): 795. http://dx.doi.org/10.3390/ijms21030795.
Pełny tekst źródłaRoman Azcona, Maria Silvia, Yongxing Fang, Antonio Carusillo, Toni Cathomen i Claudio Mussolino. "A versatile reporter system for multiplexed screening of effective epigenome editors". Nature Protocols 15, nr 10 (4.09.2020): 3410–40. http://dx.doi.org/10.1038/s41596-020-0380-y.
Pełny tekst źródłaWillyard, Cassandra. "The epigenome editors: How tools such as CRISPR offer new details about epigenetics". Nature Medicine 23, nr 8 (sierpień 2017): 900–903. http://dx.doi.org/10.1038/nm0817-900.
Pełny tekst źródłaO’Geen, Henriette, Marketa Tomkova, Jacquelyn A. Combs, Emma K. Tilley i David J. Segal. "Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing". Nucleic Acids Research 50, nr 6 (2.03.2022): 3239–53. http://dx.doi.org/10.1093/nar/gkac123.
Pełny tekst źródłaPsatha, Nikoletta, Kiriaki Paschoudi, Anastasia Papadopoulou i Evangelia Yannaki. "In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations". Genes 13, nr 12 (27.11.2022): 2222. http://dx.doi.org/10.3390/genes13122222.
Pełny tekst źródłaDehshahri, Ali, Alessio Biagioni, Hadi Bayat, E. Hui Clarissa Lee, Mohammad Hashemabadi, Hojjat Samareh Fekri, Ali Zarrabi, Reza Mohammadinejad i Alan Prem Kumar. "Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives". International Journal of Molecular Sciences 22, nr 21 (20.10.2021): 11321. http://dx.doi.org/10.3390/ijms222111321.
Pełny tekst źródłaSzyf, Moshe. "The Epigenome: Molecular Hide and Seek. Stephan Beck and Alexander Olek, editors. Weinheim, Germany: Wiley-VCH GmbH Co. KGaA, 2003, 188 pp., $35.00, softcover. ISBN 3-527-30494-0." Clinical Chemistry 49, nr 9 (1.09.2003): 1566–67. http://dx.doi.org/10.1373/49.9.1566.
Pełny tekst źródłaBrane, Andrew, Madeline Sutko i Trygve O. Tollefsbol. "p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A". International Journal of Molecular Sciences 26, nr 3 (30.01.2025): 1210. https://doi.org/10.3390/ijms26031210.
Pełny tekst źródłaRozprawy doktorskie na temat "Epigenome editors"
Fontana, Letizia. "Genome and epigenome editing approaches to treat β-hemoglobinopathies". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5230.
Pełny tekst źródłaB-thalassemia and sickle cell disease (SCD) result from mutations that affect the synthesis or structure of adult hemoglobin. Historically, allogeneic hematopoietic stem cell (HSC) transplantation from a compatible donor was the only curative treatment. Transplantation of autologous, genetically modified HSCs offers a promising therapeutic alternative for patients lacking a suitable donor. The clinical severity in b-hemoglobinopathies is mitigated by co-inheritance of hereditary persistence of fetal hemoglobin (HPFH), a benign condition characterized by mutations occurring in the genes encoding the fetal y-globin chains, which lead to increased fetal hemoglobin (HbF, a2y2) expression, which can rescue the b-thalassemic and SCD phenotypes. HbF reactivation can be achieved by down-regulating BCL11A, encoding a key repressor of HbF. A CRISPR/Cas9 strategy targeting the GATA1 binding site (BS) within the +58-kb erythroid-specific enhancer of BCL11A has recently been approved as the first gene-editing therapy for b-thalassemia and SCD. Indeed, the targeting of the BCL11A erythroid-specific enhancer led to an efficient reduction of BCL11A in the erythroid cells, without impacting the differentiation of HSPCs in the other cell lineages. However, site-specific nucleases induce double strand breaks (DSBs), posing significant risks, such apoptosis and generation of large genomic rearrangements. In addition, to obtain an adequate number of corrected cells to transplant, several collections of HSCs are necessary to compensate for the cell loss due to DSB-induced apoptosis. Finally, the clinical study showed variability in the extent of HbF reactivation, still high HbS levels and modest correction of ineffective erythropoiesis. Novel CRISPR/Cas9 derived tools are currently available and can be used to develop therapeutic strategies associated with a low risk of DSB generation and increased HbF expression. In this project, we intend to develop universal, safe and efficacious therapeutic strategies for b-hemoglobinopathies aimed at modifying HSCs using base editors (BEs) and epigenome editors to reactivate HbF expression in their erythroid progeny. BEs are a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations with little DSB generation. In this work we used this technology to inactivate the GATA1 or the ATF4 transcriptional activator BS in the +58-kb and +55-kb BCL11A erythroid-specific enhancers through the insertion of point mutations. In particular, to reach levels of HbF sufficient to rescue the sickling phenotype, we performed simultaneous targeting of the two BS, achieving similar HbF levels compared to CRISPR/Cas9 nuclease-based approach. Additionally, we showed that BEs generated fewer DSBs and genomic rearrangements compared to the CRISPR/Cas9 nuclease approach. In parallel, we developed a novel epigenome-editing strategy aimed at modulating gene expression without altering the DNA sequence (e.g. without generating DSBs). We designed two approaches to upregulate HbF expression: a first strategy targeting and activating the y-globin promoters and a second approach downregulating BCL11A by targeting its erythroid-specific enhancers. We first identified the epigenetic marks in these trans- and cis-regulatory regions that are associated with active or inactive transcription in adult versus fetal erythroid cells. Then we used epigenome editors to deposit active histone modifications at the y-globin promoters and remove inactive marks such as DNA methylation. In parallel, we decorated the BCL11A enhancers with inactive epigenetic marks. Preliminary results demonstrated y-globin reactivation using both strategies, though the effects diminished over time, indicating the need for further optimization. In conclusion, we proposed two different editing approaches that allow to reduce DSB-associate issues as strategies to treat b-hemoglobinopathies
Części książek na temat "Epigenome editors"
Sen, Dilara, i Albert J. Keung. "Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities". W Methods in Molecular Biology, 65–87. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_3.
Pełny tekst źródłaYagci, Z. Begum, Gautami R. Kelkar, Tyler J. Johnson, Dilara Sen i Albert J. Keung. "Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities". W Methods in Molecular Biology, 23–55. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_2.
Pełny tekst źródłaNoviello, Gemma, i Rutger A. F. Gjaltema. "Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors". W Methods in Molecular Biology, 57–77. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_3.
Pełny tekst źródłaKroll, Carolin, i Philipp Rathert. "Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration". W Methods in Molecular Biology, 215–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_11.
Pełny tekst źródła