Artykuły w czasopismach na temat „Expanding laminar flames”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Expanding laminar flames”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tran, Vu Manh. "USING EXPANDING SPHERICAL FLAMES METHOD TO MEASURE THE UNSTRETCHED LAMINAR BURNING VELOCITIES OF LPG-AIR MIXTURES". Science and Technology Development Journal 12, nr 8 (28.04.2009): 5–14. http://dx.doi.org/10.32508/stdj.v12i8.2270.
Pełny tekst źródłaYousif, Alaeldeen Altag, i Shaharin Anwar Sulaiman. "Experimental Study on Laminar Flame Speeds and Markstein Length of Methane-Air Mixtures at Atmospheric Conditions". Applied Mechanics and Materials 699 (listopad 2014): 714–19. http://dx.doi.org/10.4028/www.scientific.net/amm.699.714.
Pełny tekst źródłaJOMAAS, G., C. K. LAW i J. K. BECHTOLD. "On transition to cellularity in expanding spherical flames". Journal of Fluid Mechanics 583 (4.07.2007): 1–26. http://dx.doi.org/10.1017/s0022112007005885.
Pełny tekst źródłaZhao, Haoran, Chunmiao Yuan, Gang Li i Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas". Energies 17, nr 23 (28.11.2024): 5997. http://dx.doi.org/10.3390/en17235997.
Pełny tekst źródłaHuo, Jialong, Sheng Yang, Zhuyin Ren, Delin Zhu i Chung K. Law. "Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames". Combustion and Flame 189 (marzec 2018): 155–62. http://dx.doi.org/10.1016/j.combustflame.2017.10.032.
Pełny tekst źródłaWu, Fujia, Wenkai Liang, Zheng Chen, Yiguang Ju i Chung K. Law. "Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames". Proceedings of the Combustion Institute 35, nr 1 (2015): 663–70. http://dx.doi.org/10.1016/j.proci.2014.05.065.
Pełny tekst źródłaВолодин, В. В., В. В. Голуб i А. Е. Ельянов. "Влияние начальных условий на скорость фронта ламинарного пламени в газовых смесях". Журнал технической физики 91, nr 2 (2021): 247. http://dx.doi.org/10.21883/jtf.2021.02.50358.215-20.
Pełny tekst źródłaShu, Tao, Yuan Xue, Wenkai Liang i Zhuyin Ren. "Extrapolations of laminar flame speeds from expanding spherical flames based on the finite-structure stretched flames". Combustion and Flame 226 (kwiecień 2021): 445–54. http://dx.doi.org/10.1016/j.combustflame.2020.12.037.
Pełny tekst źródłaYang, Sheng, Abhishek Saha, Zirui Liu i Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames". Journal of Fluid Mechanics 850 (10.07.2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Pełny tekst źródłaLiao, S. Y., D. L. Zhong, C. Yang, X. B. Pan, C. Yuan i Q. Cheng. "The Temperature and Pressure Dependencies of Propagation Characteris-tics for Premixed Laminar Ethanol-Air Flames". Open Civil Engineering Journal 6, nr 1 (10.08.2012): 55–64. http://dx.doi.org/10.2174/1874149501206010055.
Pełny tekst źródłaKelley, A. P., i C. K. Law. "Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames". Combustion and Flame 156, nr 9 (wrzesień 2009): 1844–51. http://dx.doi.org/10.1016/j.combustflame.2009.04.004.
Pełny tekst źródłaYang, Sheng, Abhishek Saha, Fujia Wu i Chung K. Law. "Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities". Combustion and Flame 171 (wrzesień 2016): 112–18. http://dx.doi.org/10.1016/j.combustflame.2016.05.017.
Pełny tekst źródłaShu, Tao, Yuan Xue, Zijun Zhou i Zhuyin Ren. "An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames". Fuel 290 (kwiecień 2021): 120003. http://dx.doi.org/10.1016/j.fuel.2020.120003.
Pełny tekst źródłaZhang, Yakun, Stephanie A. Coronel i Rémy Mével. "Numerical study of synthetic spherically expanding flames for optimization of laminar flame speed experiments". Fuel 310 (luty 2022): 122367. http://dx.doi.org/10.1016/j.fuel.2021.122367.
Pełny tekst źródłaHuo, Jialong, Abhishek Saha, Zhuyin Ren i Chung K. Law. "Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames". Combustion and Flame 194 (sierpień 2018): 419–25. http://dx.doi.org/10.1016/j.combustflame.2018.05.025.
Pełny tekst źródłaAnggono, Willyanto, I. N. G. Wardana, M. Lawes, K. J. Hughes, Slamet Wahyudi i Nurkholis Hamidi. "Laminar Burning Velocity and Flammability Characteristics of Biogas in Spark Ignited Premix Combustion at Reduced Pressure". Applied Mechanics and Materials 376 (sierpień 2013): 79–85. http://dx.doi.org/10.4028/www.scientific.net/amm.376.79.
Pełny tekst źródłaKarpov, Vladimir P., Andrei N. Lipatnikov i Piotr Wolanski. "Finding the markstein number using the measurements of expanding spherical laminar flames". Combustion and Flame 109, nr 3 (maj 1997): 436–48. http://dx.doi.org/10.1016/s0010-2180(96)00166-6.
Pełny tekst źródłaZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu, Gang Li i Zuohua Huang. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames". Energy 283 (listopad 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.
Pełny tekst źródłaDuva, Berk Can, Lauren Elizabeth Chance i Elisa Toulson. "The critical lower radius limit approach for laminar flame speed measurement from spherically expanding stretched flames". Experimental Thermal and Fluid Science 121 (luty 2021): 110284. http://dx.doi.org/10.1016/j.expthermflusci.2020.110284.
Pełny tekst źródłaJayachandran, Jagannath, Runhua Zhao i Fokion N. Egolfopoulos. "Determination of laminar flame speeds using stagnation and spherically expanding flames: Molecular transport and radiation effects". Combustion and Flame 161, nr 9 (wrzesień 2014): 2305–16. http://dx.doi.org/10.1016/j.combustflame.2014.03.009.
Pełny tekst źródłaHaq, M. Z. "Correlations for the Onset of Instabilities of Spherical Laminar Premixed Flames". Journal of Heat Transfer 127, nr 12 (25.01.2005): 1410–15. http://dx.doi.org/10.1115/1.2098867.
Pełny tekst źródłaMovaghar, Ashkan, Robert Lawson i Fokion N. Egolfopoulos. "Confined spherically expanding flame method for measuring laminar flame speeds: Revisiting the assumptions and application to C1C4 hydrocarbon flames". Combustion and Flame 212 (luty 2020): 79–92. http://dx.doi.org/10.1016/j.combustflame.2019.10.023.
Pełny tekst źródłaBerger, Lukas, Raik Hesse, Konstantin Kleinheinz, Michael J. Hegetschweiler, Antonio Attili, Joachim Beeckmann, Gregory T. Linteris i Heinz Pitsch. "A DNS study of the impact of gravity on spherically expanding laminar premixed flames". Combustion and Flame 216 (czerwiec 2020): 412–25. http://dx.doi.org/10.1016/j.combustflame.2020.01.036.
Pełny tekst źródłaMoccia, V., J. D’Alessio i N. Rispoli. "Inferring laminar burning properties from spherical expanding flames: the pitfalls of an established approach". Journal of Physics: Conference Series 1589 (lipiec 2020): 012015. http://dx.doi.org/10.1088/1742-6596/1589/1/012015.
Pełny tekst źródłaTurner, Mattias A., Tyler T. Paschal, Pradeep Parajuli, Waruna D. Kulatilaka i Eric L. Petersen. "Application of high-speed, species-specific chemiluminescence imaging for laminar flame speed and Markstein length measurements in spherically expanding flames". Experimental Thermal and Fluid Science 129 (listopad 2021): 110477. http://dx.doi.org/10.1016/j.expthermflusci.2021.110477.
Pełny tekst źródłaZhang, Yakun, Marine Jeanson, Rémy Mével, Zheng Chen i Nabiha Chaumeix. "Tailored mixture properties for accurate laminar flame speed measurement from spherically expanding flames: Application to H2/O2/N2/He mixtures". Combustion and Flame 231 (wrzesień 2021): 111487. http://dx.doi.org/10.1016/j.combustflame.2021.111487.
Pełny tekst źródłaLipatnikov, Andrei N., Shenqyang S. Shy i Wun-yi Li. "Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths". Combustion and Flame 162, nr 7 (lipiec 2015): 2840–54. http://dx.doi.org/10.1016/j.combustflame.2015.04.003.
Pełny tekst źródłaJayachandran, Jagannath, Alexandre Lefebvre, Runhua Zhao, Fabien Halter, Emilien Varea, Bruno Renou i Fokion N. Egolfopoulos. "A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations". Proceedings of the Combustion Institute 35, nr 1 (2015): 695–702. http://dx.doi.org/10.1016/j.proci.2014.05.031.
Pełny tekst źródłaMoghaddas, Ali, Kian Eisazadeh-Far i Hameed Metghalchi. "Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures". Combustion and Flame 159, nr 4 (kwiecień 2012): 1437–43. http://dx.doi.org/10.1016/j.combustflame.2011.12.005.
Pełny tekst źródłaNawaz, Behlol, Md Nayer Nasim, Shubhra Kanti Das, Joshua Landis, Amina SubLaban, Juan Pablo Trelles, Dimitris Assanis, Noah Van Dam i J. Hunter Mack. "Combustion characteristics and emissions of nitrogen oxides (NO, NO2, N2O) from spherically expanding laminar flames of ammonia–hydrogen blends". International Journal of Hydrogen Energy 65 (maj 2024): 164–76. http://dx.doi.org/10.1016/j.ijhydene.2024.03.366.
Pełny tekst źródłaConcetti, Riccardo, Josef Hasslberger i Markus Klein. "Direct numerical simulations with multi-step chemistry of liquid water interaction with laminar spherically expanding premixed hydrogen/air flames". International Journal of Hydrogen Energy 115 (kwiecień 2025): 10–23. https://doi.org/10.1016/j.ijhydene.2025.02.286.
Pełny tekst źródłaKhan, A. R., S. Anbusaravanan, Lokesh Kalathi, Ratnakishore Velamati i C. Prathap. "Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames". Fuel 196 (maj 2017): 225–32. http://dx.doi.org/10.1016/j.fuel.2017.01.086.
Pełny tekst źródłaXiouris, Christodoulos, Tailai Ye, Jagannath Jayachandran i Fokion N. Egolfopoulos. "Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments". Combustion and Flame 163 (styczeń 2016): 270–83. http://dx.doi.org/10.1016/j.combustflame.2015.10.003.
Pełny tekst źródłaEisazadeh-Far, Kian, Ali Moghaddas, Faranak Rahim i Hameed Metghalchi. "Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model". Entropy 12, nr 12 (21.12.2010): 2485–96. http://dx.doi.org/10.3390/e12122485.
Pełny tekst źródłaHelling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes i Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres". Processes 11, nr 9 (26.08.2023): 2559. http://dx.doi.org/10.3390/pr11092559.
Pełny tekst źródłaSawant, N., B. Dorschner i I. V. Karlin. "A lattice Boltzmann model for reactive mixtures". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, nr 2208 (30.08.2021): 20200402. http://dx.doi.org/10.1098/rsta.2020.0402.
Pełny tekst źródłaTindemans, Irma, Maria E. Joosse i Janneke N. Samsom. "Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD". Cells 9, nr 1 (2.01.2020): 110. http://dx.doi.org/10.3390/cells9010110.
Pełny tekst źródłaAdamski, Robert, Dorota Siuta, Bożena Kukfisz, Michał Frydrysiak i Mirosława Prochoń. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco". Energies 14, nr 18 (18.09.2021): 5927. http://dx.doi.org/10.3390/en14185927.
Pełny tekst źródłaRokni, Emad, Ali Moghaddas, Omid Askari i Hameed Metghalchi. "Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures". Journal of Energy Resources Technology 137, nr 1 (3.09.2014). http://dx.doi.org/10.1115/1.4028363.
Pełny tekst źródłaLi, Hong-Meng, Guo-Xiu Li, Zuo-Yu Sun, Zi-Hang Zhou, Yuan Li i Ye Yuan. "Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide". Journal of Engineering for Gas Turbines and Power 138, nr 11 (24.05.2016). http://dx.doi.org/10.1115/1.4032315.
Pełny tekst źródłaCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li i Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames". Proceedings of the Combustion Institute, wrzesień 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.
Pełny tekst źródłaBechtold, John K., Gautham Krishnan i Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths". Journal of Fluid Mechanics 998 (4.11.2024). http://dx.doi.org/10.1017/jfm.2024.919.
Pełny tekst źródłaLiu, Zirui, Vishnu R. Unni, Swetaprovo Chaudhuri, Chung K. Law i Abhishek Saha. "Local statistics of laminar expanding flames subjected to Darrieus–Landau instability". Proceedings of the Combustion Institute, sierpień 2020. http://dx.doi.org/10.1016/j.proci.2020.06.118.
Pełny tekst źródłaYin, Geyuan, Erjiang Hu, Xiaotian Li, Xin Lv i Zuohua Huang. "Laminar Flame Instability of n-Hexane, n-Octane, and n-Decane in Spherical Expanding Flames". Journal of Thermal Science, 11.01.2024. http://dx.doi.org/10.1007/s11630-024-1844-0.
Pełny tekst źródłaZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu i Zuohua Huang. "On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4183159.
Pełny tekst źródłaHuo, Jialong, Abhishek Saha, Tao Shu, Zhuyin Ren i Chung K. Law. "Self-acceleration and global pulsation in expanding laminar H2−O2−N2 flames". Physical Review Fluids 4, nr 4 (16.04.2019). http://dx.doi.org/10.1103/physrevfluids.4.043201.
Pełny tekst źródłaDuva, Berk, Yen-Cheng Wang, Lauren Chance i Elisa Toulson. "Laminar Flame Characteristics of Sequential Two-Stage Combustion of Premixed Methane/Air Flames". Journal of Engineering for Gas Turbines and Power, 15.09.2020. http://dx.doi.org/10.1115/1.4048450.
Pełny tekst źródłaKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares i Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses". Journal of Engineering for Gas Turbines and Power, 3.08.2021. http://dx.doi.org/10.1115/1.4051989.
Pełny tekst źródłaTurner, Mattias, i Eric Petersen. "High-Pressure Laminar Flame Speeds and Markstein Lengths of Syngas Flames Diluted in Carbon Dioxide and Helium". Journal of Engineering for Gas Turbines and Power, 27.09.2022. http://dx.doi.org/10.1115/1.4055796.
Pełny tekst źródłaAmerighi, Matteo, Giada Senatori, Antonio Andreini, Thierry Schuller, Tarik Yahou i James Dawson. "Complete Dynamics from Ignition to Stabilization of a Lean Hydrogen Flame with Thickened Flame Model". Journal of Engineering for Gas Turbines and Power, 19.09.2024, 1–13. http://dx.doi.org/10.1115/1.4066590.
Pełny tekst źródła