Artykuły w czasopismach na temat „Ferroelectrics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ferroelectrics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Xinhao, and Bo Peng. "The twisted two-dimensional ferroelectrics." Journal of Semiconductors 44, no. 1 (2023): 011002. http://dx.doi.org/10.1088/1674-4926/44/1/011002.
Pełny tekst źródłaWANG, JIE, and TONG-YI ZHANG. "PHASE FIELD STUDY OF POLARIZATION VORTEX IN FERROELECTRIC NANOSTRUCTURES." Journal of Advanced Dielectrics 02, no. 02 (2012): 1241002. http://dx.doi.org/10.1142/s2010135x12410020.
Pełny tekst źródłaMA, WENHUI. "FLEXOELECTRIC EFFECT IN FERROELECTRICS." Functional Materials Letters 01, no. 03 (2008): 235–38. http://dx.doi.org/10.1142/s179360470800037x.
Pełny tekst źródłaHuyan, Huaixun, Linze Li, Christopher Addiego, Wenpei Gao, and Xiaoqing Pan. "Structures and electronic properties of domain walls in BiFeO3 thin films." National Science Review 6, no. 4 (2019): 669–83. http://dx.doi.org/10.1093/nsr/nwz101.
Pełny tekst źródłaKe, Changming, Jiawei Huang, and Shi Liu. "Two-dimensional ferroelectric metal for electrocatalysis." Materials Horizons 8, no. 12 (2021): 3387–93. http://dx.doi.org/10.1039/d1mh01556g.
Pełny tekst źródłaKimura, Tsuyoshi. "Current Progress of Research on Magnetically-induced Ferroelectrics." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C6. http://dx.doi.org/10.1107/s2053273314099938.
Pełny tekst źródłaLiu, Meiying, Jingjing Liang, Yadong Tian, and Zhiliang Liu. "Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance." CrystEngComm 24, no. 4 (2022): 724–37. http://dx.doi.org/10.1039/d1ce01567b.
Pełny tekst źródłaGao, Liang, Ben-Lin Hu, Linping Wang, et al. "Intrinsically elastic polymer ferroelectric by precise slight cross-linking." Science 381, no. 6657 (2023): 540–44. http://dx.doi.org/10.1126/science.adh2509.
Pełny tekst źródłaPARK, Min Hyuk. "Renaissance of Ferroelectric Memories: Can They Be a Game-changer?" Physics and High Technology 30, no. 9 (2021): 16–23. http://dx.doi.org/10.3938/phit.30.028.
Pełny tekst źródłaChen, Zibin, Fei Li, Qianwei Huang, et al. "Giant tuning of ferroelectricity in single crystals by thickness engineering." Science Advances 6, no. 42 (2020): eabc7156. http://dx.doi.org/10.1126/sciadv.abc7156.
Pełny tekst źródłaRicinschi, Dan, and Eisuke Tokumitsu. "Multiagent Strategic Interaction Based on a Game Theoretical Approach to Polarization Reversal in Ferroelectric Capacitors." Journal of Advanced Computational Intelligence and Intelligent Informatics 15, no. 7 (2011): 806–12. http://dx.doi.org/10.20965/jaciii.2011.p0806.
Pełny tekst źródłaPavlenko, Maksim A., Franco Di Rino, Leo Boron, et al. "Phase Diagram of a Strained Ferroelectric Nanowire." Crystals 12, no. 4 (2022): 453. http://dx.doi.org/10.3390/cryst12040453.
Pełny tekst źródłaYANG, Chan-Ho. "New Horizons for Ferroelectrics." Physics and High Technology 30, no. 9 (2021): 24–30. http://dx.doi.org/10.3938/phit.30.029.
Pełny tekst źródłaMikolajick, Thomas, Stefan Müller, Tony Schenk, et al. "Doped Hafnium Oxide – An Enabler for Ferroelectric Field Effect Transistors." Advances in Science and Technology 95 (October 2014): 136–45. http://dx.doi.org/10.4028/www.scientific.net/ast.95.136.
Pełny tekst źródłaSidorkin, A. S., B. M. Darinskii, S. D. Milovidova, L. N. Korotkov, and G. S. Grigoryan. "Effect of the Component Interaction on the Phase Transitions and Dielectric Properties of Ferroelectric Composites." Кристаллография 68, no. 5 (2023): 832–40. http://dx.doi.org/10.31857/s0023476123600519.
Pełny tekst źródłaWang, Yumeng. "Two-Dimensional Ferroelectric Materials: Synthesis, Characterization and Applications." Highlights in Science, Engineering and Technology 112 (August 20, 2024): 128–36. http://dx.doi.org/10.54097/rzvdx423.
Pełny tekst źródłaShang, Jing, Congxin Xia, Chun Tang, et al. "Mechano-ferroelectric coupling: stabilization enhancement and polarization switching in bent AgBiP2Se6 monolayers." Nanoscale Horizons 6, no. 12 (2021): 971–78. http://dx.doi.org/10.1039/d1nh00402f.
Pełny tekst źródłaLe, Minh-Tien, Phuong-Linh Do, Van-Tuan Le, et al. "The origin of piezoelectric enhancement in compositionally graded ferroelectrics with sinusoidal variation." Applied Physics Letters 121, no. 16 (2022): 162905. http://dx.doi.org/10.1063/5.0115482.
Pełny tekst źródłaLiu, Arthur Haozhe, Lisa Luhong Wang, and Lingping Kong. "Relaxor ferroelectrics materials under high pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C979. http://dx.doi.org/10.1107/s2053273314090202.
Pełny tekst źródłaLi, Peng-Fei, Wei-Qiang Liao, Yuan-Yuan Tang, et al. "Organic enantiomeric high-Tcferroelectrics." Proceedings of the National Academy of Sciences 116, no. 13 (2019): 5878–85. http://dx.doi.org/10.1073/pnas.1817866116.
Pełny tekst źródłaSayer, M., Z. Wu, C. V. R. Vasant Kumar, D. T. Amm, and E. M. Griswold. "Ferroelectrics for semiconductor devices." Canadian Journal of Physics 70, no. 10-11 (1992): 1159–70. http://dx.doi.org/10.1139/p92-188.
Pełny tekst źródłaWu, Ming, Yanan Xiao, Yu Yan, et al. "Achieving Good Temperature Stability of Dielectric Constant by Constructing Composition Gradient in (Pb1−x,Lax)(Zr0.65,Ti0.35)O3 Multilayer Thin Films." Materials 15, no. 12 (2022): 4123. http://dx.doi.org/10.3390/ma15124123.
Pełny tekst źródłaBenedek, Nicole A., and Michael A. Hayward. "Hybrid Improper Ferroelectricity: A Theoretical, Computational, and Synthetic Perspective." Annual Review of Materials Research 52, no. 1 (2022): 331–55. http://dx.doi.org/10.1146/annurev-matsci-080819-010313.
Pełny tekst źródłaRüdiger, Andreas, and Rainer Waser. "Nanoscale Ferroelectrics." Advances in Science and Technology 45 (October 2006): 2392–99. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2392.
Pełny tekst źródłaDong, Guohua, Suzhi Li, Mouteng Yao, et al. "Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation." Science 366, no. 6464 (2019): 475–79. http://dx.doi.org/10.1126/science.aay7221.
Pełny tekst źródłaPatrusheva, Tamara, Sergey Petrov, Ludmila Drozdova, and Aleksandr Shashurin. "FERROELECTRICS IN ACOUSTOELECTRONICS." VOLUME 39, VOLUME 39 (2021): 217. http://dx.doi.org/10.36336/akustika202139217.
Pełny tekst źródłaShao, Yu-Tsun, and Jian-Min Zuo. "Nanoscale symmetry fluctuations in ferroelectric barium titanate, BaTiO3." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 73, no. 4 (2017): 708–14. http://dx.doi.org/10.1107/s2052520617008496.
Pełny tekst źródłaLi, Yibao, Ye Du, Chao-Ran Huang, et al. "Homochiral anionic modification toward the chemical design of organic enantiomeric ferroelectrics." Chemical Communications 57, no. 42 (2021): 5171–74. http://dx.doi.org/10.1039/d1cc01675j.
Pełny tekst źródłaZhang, J. P., and J. S. Speck. "Identification of the polarized microregions in PLZT." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 556–57. http://dx.doi.org/10.1017/s0424820100170517.
Pełny tekst źródłaWang, Jian-Jun, Bo Wang, and Long-Qing Chen. "Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method." Annual Review of Materials Research 49, no. 1 (2019): 127–52. http://dx.doi.org/10.1146/annurev-matsci-070218-121843.
Pełny tekst źródłaKho, Wonwoo, Hyunjoo Hwang, Jisoo Kim, Gyuil Park, and Seung-Eon Ahn. "Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures." Nanomaterials 13, no. 3 (2023): 439. http://dx.doi.org/10.3390/nano13030439.
Pełny tekst źródłaLai, Keji. "Spontaneous polarization in van der Waals materials: Two-dimensional ferroelectrics and device applications." Journal of Applied Physics 132, no. 12 (2022): 121102. http://dx.doi.org/10.1063/5.0116445.
Pełny tekst źródłaZhu, Zhongyunshen, Anton E. O. Persson, and Lars-Erik Wernersson. "Sensing single domains and individual defects in scaled ferroelectrics." Science Advances 9, no. 5 (2023). http://dx.doi.org/10.1126/sciadv.ade7098.
Pełny tekst źródłaLi, Bowen, Linping Wang, Liang Gao, et al. "Elastic relaxor ferroelectric by thiol‐ene click reaction." Angewandte Chemie International Edition, March 15, 2024. http://dx.doi.org/10.1002/anie.202400511.
Pełny tekst źródłaLi, Bowen, Linping Wang, Liang Gao, et al. "Elastic relaxor ferroelectric by thiol‐ene click reaction." Angewandte Chemie, March 15, 2024. http://dx.doi.org/10.1002/ange.202400511.
Pełny tekst źródłaMa, Junpeng, Ming-Ding Li, Fang Wang, Chen Li, and Qun-Dong Shen. "Controllable tuning of ferroelectric switching via the lattice in crystallographically engineered molecular ferroelectrics." Journal of Applied Physics 133, no. 19 (2023). http://dx.doi.org/10.1063/5.0148284.
Pełny tekst źródłaYao, Jie, Zi‐Jie Feng, Zhenliang Hu, et al. "2D Molecular Ferroelectric with Large Out‐of‐plane Polarization for In‐Memory Computing." Advanced Functional Materials, February 6, 2024. http://dx.doi.org/10.1002/adfm.202314790.
Pełny tekst źródłaFan, Zhiwei, Jingyuan Qu, Tao Wang, et al. "Recent Progress on Two-Dimensional Ferroelectrics: Material Systems and Device Applications." Chinese Physics B, November 2, 2023. http://dx.doi.org/10.1088/1674-1056/ad08a4.
Pełny tekst źródłaHan, Wei, Yunwei Jia, Hao Wang, Shu Ping Lau, Thuc Hue Ly, and Jiong Zhao. "Phase transition of 2D van der Waals ferroelectrics." 2D Materials, May 12, 2025. https://doi.org/10.1088/2053-1583/add749.
Pełny tekst źródłaHuang, Yulong, Jennifer L. Gottfried, Arpita Sarkar, Gengyi Zhang, Haiqing Lin, and Shenqiang Ren. "Proton-controlled molecular ionic ferroelectrics." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-40825-6.
Pełny tekst źródłaWang, Linping, Liang Gao, Xiaocui Rao, et al. "High-Performance Elastic Ferroelectrics via Low-Temperature Carbene Crosslinking and High-Temperature Annealing." Chemical Science, 2025. https://doi.org/10.1039/d5sc01467k.
Pełny tekst źródłaCao, Xiao‐Xing, Ru‐Jie Zhou, Yu‐An Xiong, et al. "Volume‐Confined Fabrication of Large‐Scale Single‐Crystalline Molecular Ferroelectric Thin Films and Their Applications in 2D Materials." Advanced Science, November 30, 2023. http://dx.doi.org/10.1002/advs.202305016.
Pełny tekst źródłaPeng, Hang, Yan Qin, Xiao-Gang Chen, Xian-Jiang Song, Ren-Gen Xiong, and Wei-Qiang Liao. "The First Kleinman‐type Second‐Harmonic Generation Circular Dichroism On/Off Switchable Ferroelectrics." Angewandte Chemie, January 27, 2025. https://doi.org/10.1002/ange.202500285.
Pełny tekst źródłaPeng, Hang, Yan Qin, Xiao-Gang Chen, Xian-Jiang Song, Ren-Gen Xiong, and Wei-Qiang Liao. "The First Kleinman‐type Second‐Harmonic Generation Circular Dichroism On/Off Switchable Ferroelectrics." Angewandte Chemie International Edition, January 27, 2025. https://doi.org/10.1002/anie.202500285.
Pełny tekst źródłaZhang, Junting, Yu Xie, Ke Ji, and Xiaofan Shen. "Perspective on 2D perovskite ferroelectrics and multiferroics." Applied Physics Letters 125, no. 23 (2024). https://doi.org/10.1063/5.0235723.
Pełny tekst źródłaHuang, Jiawei, Changming Ke, Wei Zhu, and Shi Liu. "One Dimensional Ferroelectric Nanothreads with Axial and Radial Polarization." Nanoscale Horizons, 2023. http://dx.doi.org/10.1039/d3nh00154g.
Pełny tekst źródłaHu, Huihui, Rong Liu, Yan-Bing Zhu, et al. "Application of Molecular Ferroelectric in Photocatalytic Selective Oxidization of C(sp3)−H Bonds." Angewandte Chemie International Edition, April 7, 2025. https://doi.org/10.1002/anie.202500176.
Pełny tekst źródłaHu, Huihui, Rong Liu, Yan-Bing Zhu, et al. "Application of Molecular Ferroelectric in Photocatalytic Selective Oxidization of C(sp3)−H Bonds." Angewandte Chemie, April 7, 2025. https://doi.org/10.1002/ange.202500176.
Pełny tekst źródłaXue, Chen, Masaru Fujibayashi, Hengming Huang, et al. "Enhanced Electromechanical Response in 1D Hybrid Perovskites: Coexistence of Normal and Relaxor Ferroelectric Phases." Advanced Functional Materials, March 20, 2025. https://doi.org/10.1002/adfm.202501299.
Pełny tekst źródłaXiong, Yu-An, Sheng-Shun Duan, Hui-Hui Hu, et al. "Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-48948-0.
Pełny tekst źródła