Artykuły w czasopismach na temat „Feynman gate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Feynman gate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Seyedi, Saeid, Akira Otsuki, and Nima Jafari Navimipour. "A New Cost-Efficient Design of a Reversible Gate Based on a Nano-Scale Quantum-Dot Cellular Automata Technology." Electronics 10, no. 15 (2021): 1806. http://dx.doi.org/10.3390/electronics10151806.
Pełny tekst źródłaBhandari, Jugal. "A Novel Design Approach of Low Power Consuming Decoder using Reversible Logic Gates." International Journal of Advance Research and Innovation 4, no. 1 (2016): 95–101. http://dx.doi.org/10.51976/ijari.411614.
Pełny tekst źródłaZhou, Chunyang, Kun Wang, Daoqing Fan, et al. "An enzyme-free and DNA-based Feynman gate for logically reversible operation." Chemical Communications 51, no. 51 (2015): 10284–86. http://dx.doi.org/10.1039/c5cc02865e.
Pełny tekst źródłaDeng, Jiankang, Zhanhui Tao, Yaqing Liu, et al. "A target-induced logically reversible logic gate for intelligent and rapid detection of pathogenic bacterial genes." Chemical Communications 54, no. 25 (2018): 3110–13. http://dx.doi.org/10.1039/c8cc00178b.
Pełny tekst źródłaTian, Yonghui, Zilong Liu, Tonghe Ying, et al. "Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators." Nanophotonics 7, no. 1 (2018): 333–37. http://dx.doi.org/10.1515/nanoph-2017-0071.
Pełny tekst źródłaTripathi, Devendra Kr. "Investigations with Reversible Feynman Gate and Irreversible Logic Schematics." Journal of Optical Communications 40, no. 4 (2019): 385–92. http://dx.doi.org/10.1515/joc-2017-0106.
Pełny tekst źródłaSattibabu, Romala, and Pranabendu Ganguly. "Design of reversible optical Feynman gate using directional couplers." Optical Engineering 59, no. 02 (2020): 1. http://dx.doi.org/10.1117/1.oe.59.2.027104.
Pełny tekst źródłaMaity, Heranmoy, Arindam Biswas, Anita Pal, and Anup Kumar Bhattacharjee. "Design of BCD to Excess-3 code converter circuit with optimized quantum cost, garbage output and constant input using reversible gate." International Journal of Quantum Information 16, no. 07 (2018): 1850061. http://dx.doi.org/10.1142/s0219749918500612.
Pełny tekst źródłaKannan, R., and K. Vidhya. "Design of Combinational Circuits Using Reversible Decoder in Tanner Tools." Journal of Computational and Theoretical Nanoscience 17, no. 4 (2020): 1743–51. http://dx.doi.org/10.1166/jctn.2020.8436.
Pełny tekst źródłaFratto, Brian E., Nataliia Guz, and Evgeny Katz. "Biomolecular Computing Realized in Parallel Flow Systems: Enzyme-Based Double Feynman Logic Gate." Parallel Processing Letters 25, no. 01 (2015): 1540001. http://dx.doi.org/10.1142/s0129626415400010.
Pełny tekst źródłaErniyazov, S., and J. C. Jeon. "Reversible Circuit Design in QCA Based on Double Feynman Gate." Advanced Science Letters 23, no. 10 (2017): 9852–56. http://dx.doi.org/10.1166/asl.2017.9810.
Pełny tekst źródłaRemón, Patricia, Rita Ferreira, Jose-Maria Montenegro, Rafael Suau, Ezequiel Pérez-Inestrosa, and Uwe Pischel. "Reversible Molecular Logic: A Photophysical Example of a Feynman Gate." ChemPhysChem 10, no. 12 (2009): 2004–7. http://dx.doi.org/10.1002/cphc.200900375.
Pełny tekst źródłaRemón, Patricia, Rita Ferreira, Jose-Maria Montenegro, Rafael Suau, Ezequiel Pérez-Inestrosa, and Uwe Pischel. "Reversible Molecular Logic: A Photophysical Example of a Feynman Gate." ChemPhysChem 10, no. 12 (2009): 1942. http://dx.doi.org/10.1002/cphc.200990045.
Pełny tekst źródłaRemón, Patricia, Rita Ferreira, Jose-Maria Montenegro, Rafael Suau, Ezequiel Pérez-Inestrosa, and Uwe Pischel. "Reversible Molecular Logic: A Photophysical Example of a Feynman Gate." ChemPhysChem 10, no. 12 (2009): 2004–7. https://doi.org/10.1002/cphc.200900375.
Pełny tekst źródłaRemón, Patricia, Rita Ferreira, Jose-Maria Montenegro, Rafael Suau, Ezequiel Pérez-Inestrosa, and Uwe Pischel. "Reversible Molecular Logic: A Photophysical Example of a Feynman Gate." ChemPhysChem 10, no. 12 (2009): 2004–7. https://doi.org/10.5281/zenodo.10648118.
Pełny tekst źródłaWaheed, Sajjad, Sharmin Aktar, and Ali Newaz Bahar. "A Novel Design and Implementation of New Double Feynman and Six-correction logic (DFSCL) gates in Quantum-dot Cellular Automata (QCA)." European Scientific Journal, ESJ 13, no. 15 (2017): 265. http://dx.doi.org/10.19044/esj.2017.v13n15p265.
Pełny tekst źródłaMukherjee, Chiradeep, Saradindu Panda, Asish K. Mukhopadhyay, and Bansibadan Maji. "Utilization of LTEx Feynman Gate in Designing the QCA Based Reversible Binary to Gray and Gray to Binary Code Converters." Micro and Nanosystems 12, no. 3 (2020): 187–200. http://dx.doi.org/10.2174/1876402912666200127162526.
Pełny tekst źródłaDas, Jadav Chandra, and Debashis De. "Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate." Journal of Supercomputing 75, no. 10 (2019): 6882–903. http://dx.doi.org/10.1007/s11227-019-02904-8.
Pełny tekst źródłaA.Anjana. "Even and Odd Parity Generator and Checker using the Reversible logic gates." International Journal of Computer Science and Engineering Communications 1, no. 1 (2013): 62–66. https://doi.org/10.5281/zenodo.821766.
Pełny tekst źródłaPandey, Kamal Prakash. "Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate." International Journal for Research in Applied Science and Engineering Technology 6, no. 1 (2018): 1775–83. http://dx.doi.org/10.22214/ijraset.2018.1271.
Pełny tekst źródłaWang, Pengjun, Jian Ding, Weiwei Chen, et al. "Plasmonic Feynman Gate Based on Suspended Graphene Nano-Ribbon Waveguides at THz Wavelengths." IEEE Photonics Journal 11, no. 3 (2019): 1–9. http://dx.doi.org/10.1109/jphot.2019.2918047.
Pełny tekst źródłaMandal, Dhoumendra. "Design of Optically Controlled Reversible NOT Gate Using Micro Ring Resonators." Journal of Physics: Conference Series 2426, no. 1 (2023): 012003. http://dx.doi.org/10.1088/1742-6596/2426/1/012003.
Pełny tekst źródłaMaity, Heranmoy, Mousam Chatterjee, Susmita Biswas, et al. "A New Approach to Design of Cost-Efficient Reversible Quantum Dual-Full Adder and Subtractor." International Journal of Mathematical, Engineering and Management Sciences 9, no. 2 (2024): 341–51. http://dx.doi.org/10.33889/ijmems.2024.9.2.018.
Pełny tekst źródłaKotiyal, Saurabh, and Himanshu Thapliyal. "Design Methodologies for Reversible Logic Based Barrel Shifters." Journal of Circuits, Systems and Computers 25, no. 02 (2015): 1650003. http://dx.doi.org/10.1142/s0218126616500031.
Pełny tekst źródłaChoi, Seungdo, Geonhu Lee, and Jongmin Kim. "Cellular Computational Logic Using Toehold Switches." International Journal of Molecular Sciences 23, no. 8 (2022): 4265. http://dx.doi.org/10.3390/ijms23084265.
Pełny tekst źródłaWaheed, Sajjad, and Md Golam Rasel. "Design and Implementation of New Feynman and Toffoli (NFT) Gates in Quantum-dot Cellular Automata (QCA)." Circulation in Computer Science 2, no. 4 (2017): 64–67. http://dx.doi.org/10.22632/ccs-2017-252-10.
Pełny tekst źródłaKumar, Dasari Mahesh. "Single Bit Alu Using Reversible Logic Gates." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem49514.
Pełny tekst źródłaSharma, Ritvik, and Sara Achour. "Optimizing Ancilla-Based Quantum Circuits with SPARE." Proceedings of the ACM on Programming Languages 9, PLDI (2025): 176–200. https://doi.org/10.1145/3729253.
Pełny tekst źródłaMOHAN, Sri C. MURALI, and T. SWATHI. "64-Bit ALU Design Using Reversible Gates." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44380.
Pełny tekst źródłaCorli, Sebastiano, and Enrico Prati. "Gauge freedom in measurement based quantum compiling." Journal of Physics: Conference Series 3017, no. 1 (2025): 012043. https://doi.org/10.1088/1742-6596/3017/1/012043.
Pełny tekst źródłaTai, Nguyen Van. "All optical logic gates based on nanoplasmonic MIM waveguides." Journal of Science and Technology: Issue on Information and Communications Technology 18, no. 12.2 (2020): 1. http://dx.doi.org/10.31130/ict-ud.2020.107.
Pełny tekst źródłaVahabi, Mohsen, Ehsan Rahimi, Pavel Lyakhov, Ali Newaz Bahar, Khan A. Wahid, and Akira Otsuki. "Novel Quantum-Dot Cellular Automata-Based Gate Designs for Efficient Reversible Computing." Sustainability 15, no. 3 (2023): 2265. http://dx.doi.org/10.3390/su15032265.
Pełny tekst źródłaDas, Jadav Chandra, and Debashis De. "Feynman gate based design of n-bit reversible inverter and its implementation on quantum-dot cellular automata." Nano Communication Networks 24 (May 2020): 100298. http://dx.doi.org/10.1016/j.nancom.2020.100298.
Pełny tekst źródłaBhoskar, Harsh Abhijit. "Review on Reversible Logic Gates." International Journal for Research in Applied Science and Engineering Technology 11, no. 11 (2023): 2058–63. http://dx.doi.org/10.22214/ijraset.2023.57020.
Pełny tekst źródłaThosar, Yug Milind. "Design and FPGA Implementation of a 4-Bit ALU Using Reversible Logic Gates." International Journal for Research in Applied Science and Engineering Technology 13, no. 6 (2025): 1299–306. https://doi.org/10.22214/ijraset.2025.72366.
Pełny tekst źródłaJeon, Jun-Cheol. "Multi-Layer QCA Reversible Full Adder-Subtractor Using Reversible Gates for Reliable Information Transfer and Minimal Power Dissipation on Universal Quantum Computer." Applied Sciences 14, no. 19 (2024): 8886. http://dx.doi.org/10.3390/app14198886.
Pełny tekst źródłaStoll, Elizabeth A. "The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks." AppliedMath 4, no. 3 (2024): 806–27. http://dx.doi.org/10.3390/appliedmath4030043.
Pełny tekst źródłaB.Y., Galadima G.S.M Galadanci S.M. Gana A. Tijjani M. Ibrahim. "QCA Based Design of Reversible Parity Generator and Parity Checker Circuits for Telecommunication." NIPES Journal of Science and Technology Research 5, no. 2 (2023): 331–43. https://doi.org/10.5281/zenodo.8070398.
Pełny tekst źródłaRupsa Roy, Swarup Sarkar,. "QCA based Novel Reversible Reconfigurable Ripple Carry Adder with Ripple Borrow Subtractor in Electro-Spin Technology." Psychology and Education Journal 58, no. 2 (2021): 813–23. http://dx.doi.org/10.17762/pae.v58i2.1916.
Pełny tekst źródłaGaladima, Bahijja Yahaya, and Garba Shehu Musa Galadanci. "QCA-BASED design of reversible hamming code encoding, decoding and correcting circuits." International Journal of Basic and Applied Sciences 13, no. 2 (2024): 18–24. http://dx.doi.org/10.14419/c0yt6z13.
Pełny tekst źródłaSrivastava, Rajkamal, Kathakali Sarkar, Deepro Bonnerjee, and Sangram Bagh. "Synthetic Genetic Reversible Feynman Gate in a Single E. coli Cell and Its Application in Bacterial to Mammalian Cell Information Transfer." ACS Synthetic Biology 11, no. 3 (2022): 1040–48. http://dx.doi.org/10.1021/acssynbio.1c00392.
Pełny tekst źródłaPradeep, Singla. "POWER GATING STRUCTURE FOR REVERSIBLE PROGRAMMABLE LOGIC ARRAY." Electrical & Computer Engineering: An International Journal (ECIJ) 4, no. 3 (2015): 01–14. https://doi.org/10.5281/zenodo.3568776.
Pełny tekst źródłaAdeoye, Moses Adeleke. "From Struggle to Success: The Feynman Techniques' Revolutionary Impact on Slow Learners." Thinking Skills and Creativity Journal 6, no. 2 (2023): 125–33. http://dx.doi.org/10.23887/tscj.v6i2.69681.
Pełny tekst źródłaPramanik, Paramahansa. "Consensus as a Nash Equilibrium of a Stochastic Differential Game." European Journal of Statistics 3 (June 5, 2023): 10. http://dx.doi.org/10.28924/ada/stat.3.10.
Pełny tekst źródłaMa, Chaoqun, Hui Wu, and Xiang Lin. "Nonzero-Sum Stochastic Differential Portfolio Games under a Markovian Regime Switching Model." Mathematical Problems in Engineering 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/738181.
Pełny tekst źródłaPramanik, Paramahansa. "Stubbornness as Control in Professional Soccer Games: A BPPSDE Approach." Mathematics 13, no. 3 (2025): 475. https://doi.org/10.3390/math13030475.
Pełny tekst źródłaShcherbakov, R. N. "A Merry Game of Solving the Secrets of Nature: On the Centenary of the Birth of R.P. Feynman." Herald of the Russian Academy of Sciences 88, no. 4 (2018): 307–12. http://dx.doi.org/10.1134/s1019331618030085.
Pełny tekst źródłaOzhigov, Yuri I. "About quantum computer software." Quantum Information and Computation 20, no. 7&8 (2020): 570–80. http://dx.doi.org/10.26421/qic20.7-8-3.
Pełny tekst źródłaSerafini, Stefano, and Tatyana S. Turova. "“Searching for order at all levels”. Antonio Lima-de-Faria (July 4, 1921 – December 27, 2023)." Caryologia 76, no. 3 (2024): 71–73. http://dx.doi.org/10.36253/caryologia-2465.
Pełny tekst źródłaRiyaz, Sadat, and Vijay Kumar Sharma. "Design of reversible Feynman and double Feynman gates in quantum-dot cellular automata nanotechnology." Circuit World ahead-of-print, ahead-of-print (2021). http://dx.doi.org/10.1108/cw-08-2020-0199.
Pełny tekst źródła