Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite-Temperature properties.

Artykuły w czasopismach na temat „Finite-Temperature properties”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite-Temperature properties”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ishii, Noriyoshi, Hideo Suganuma, and Hideo Matsufuru. "Glueball properties at finite temperature." Nuclear Physics B - Proceedings Supplements 106-107 (March 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Drabold, David A., P. A. Fedders, Stefan Klemm, and Otto F. Sankey. "Finite-temperature properties of amorphous silicon." Physical Review Letters 67, no. 16 (1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Seibert, David, and Charles Gale. "Measuring hadron properties at finite temperature." Physical Review C 52, no. 2 (1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jaklič, J., and P. Prelovšek. "Finite-temperature properties of doped antiferromagnets." Advances in Physics 49, no. 1 (2000): 1–92. http://dx.doi.org/10.1080/000187300243381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liu, Hanbin, and Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters." Journal of Physical Chemistry A 107, no. 30 (2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

HAN, FUXIANG, and YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES." International Journal of Modern Physics B 19, no. 31 (2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.

Pełny tekst źródła
Streszczenie:
Within a mean-field treatment of the Bose–Hubbard model for an optical lattice, we have derived a self-consistent equation for the order parameter of possible phases in the optical lattice at finite temperatures. From the solutions to the self-consistent equation, we have inferred the temperature dependence of the order parameter and transition temperatures of Mott-insulator and superfluid phases into the normal phase. The condensation fraction in the superfluid phase has been deduced from the one-body density matrix and its temperature dependence has been given. In terms of the normalized cor
Style APA, Harvard, Vancouver, ISO itp.
7

Ju, Nengjiu, and Aurel Bulgac. "Finite-temperature properties of sodium clusters." Physical Review B 48, no. 4 (1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wu, K. L., S. K. Lai, and W. D. Lin. "Finite temperature properties for zinc nanoclusters." Molecular Simulation 31, no. 6-7 (2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

de Oliveira, N. A., and A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties." Journal of Magnetism and Magnetic Materials 117, no. 1-2 (1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yang, Jie, Jue-lian Shen, and Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model." Journal of the Physical Society of Japan 68, no. 7 (1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Kumar, Priyank, N. K. Bhatt, P. R. Vyas, and V. B. Gohel. "Thermophysical properties of iridium at finite temperature." Chinese Physics B 25, no. 11 (2016): 116401. http://dx.doi.org/10.1088/1674-1056/25/11/116401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bhatt, N. K., P. R. Vyas, V. B. Gohel, and A. R. Jani. "Finite-temperature thermophysical properties of fcc-Ca." European Physical Journal B 58, no. 1 (2007): 61–68. http://dx.doi.org/10.1140/epjb/e2007-00196-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Brunet, L. G., R. M. Ribeiro-Teixeira, and J. R. Iglesias. "FINITE TEMPERATURE PROPERTIES OF THE ANDERSON LATTICE." Le Journal de Physique Colloques 49, no. C8 (1988): C8–697—C8–698. http://dx.doi.org/10.1051/jphyscol:19888315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Horwitz, G., and G. Kalbermann. "Properties of a finite-temperature supersymmetric ensemble." Physical Review D 38, no. 2 (1988): 714–17. http://dx.doi.org/10.1103/physrevd.38.714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

PASSAMANI, TOMAZ, and MARIA LUIZA CESCATO. "HOT NUCLEAR MATTER PROPERTIES." International Journal of Modern Physics E 16, no. 09 (2007): 3041–44. http://dx.doi.org/10.1142/s0218301307009002.

Pełny tekst źródła
Streszczenie:
The nuclear matter at finite temperature is described in the relativistic mean field theory using linear and nonlinear interactions. The behavior of effective nucleon mass with temperature was numerically calculated. For the nonlinear NL3 interaction we also observed the striking decrease at temperatures well below the nucleon mass. The calculation of NL3 nuclear matter equation of state at finite temperature is still on progress.
Style APA, Harvard, Vancouver, ISO itp.
16

DUNNE, GERALD V. "FINITE TEMPERATURE INDUCED FERMION NUMBER." International Journal of Modern Physics A 17, no. 06n07 (2002): 890–97. http://dx.doi.org/10.1142/s0217751x02010273.

Pełny tekst źródła
Streszczenie:
The induced fermion number at zero temperature is topological (in the sense that it is only sensitive to global asymptotic properties of the background field), and is a sharp observable (in the sense that it has vanishing rms fluctuations). At finite temperature, it is shown to be generically nontopological, and it is not a sharp observable.
Style APA, Harvard, Vancouver, ISO itp.
17

ITO, IKUO, and TADASHI KON. "THERMAL PROPERTIES OF PARASUPERSYMMETRIC OSCILLATOR." International Journal of Modern Physics A 07, no. 17 (1992): 3997–4014. http://dx.doi.org/10.1142/s0217751x92001782.

Pełny tekst źródła
Streszczenie:
Parasupersymmetric oscillator model of one bosonic and one order p parafermionic degrees of freedom at finite temperature is investigated in the framework of Thermo Field Dynamics (TFD). The temperature dependent vacuum |O(β)> is constructed and the generator of thermal unitary transformation |O(β)>=e−iG(β)|O> is obtained. We also comment on a signal of the parasuper-symmetry breaking at finite temperature.
Style APA, Harvard, Vancouver, ISO itp.
18

Shinozaki, Misako, Shintaro Hoshino, Yusuke Masaki, Jun-ichiro Kishine, and Yusuke Kato. "Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets." Journal of the Physical Society of Japan 85, no. 7 (2016): 074710. http://dx.doi.org/10.7566/jpsj.85.074710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Yoshimi, Kazuyoshi, Makoto Naka, and Hitoshi Seo. "Finite Temperature Properties of Geometrically Charge Frustrated Systems." Journal of the Physical Society of Japan 89, no. 3 (2020): 034003. http://dx.doi.org/10.7566/jpsj.89.034003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

LeSar, R., R. Najafabadi, and D. J. Srolovitz. "Finite-temperature defect properties from free-energy minimization." Physical Review Letters 63, no. 6 (1989): 624–27. http://dx.doi.org/10.1103/physrevlett.63.624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ibarra, J. R. Morones, A. J. Garza Aguirre, and Francisco V. Flores-Baez. "Properties of the sigma meson at finite temperature." International Journal of Modern Physics A 30, no. 35 (2015): 1550214. http://dx.doi.org/10.1142/s0217751x15502140.

Pełny tekst źródła
Streszczenie:
We study the changes of the mass and width of the sigma meson in the framework of the Linear Sigma Model at finite temperature, in the one-loop approximation. We have found that as the temperature increases, the mass of sigma shifts down. We have also analyzed the [Formula: see text]-spectral function and we observe an enhancement at the threshold which is a signature of partial restoration of chiral symmetry, also interpreted as a tendency to chiral phase transition. Additionally, we studied the width of the sigma, when the threshold enhancement takes place, for different values of the sigma
Style APA, Harvard, Vancouver, ISO itp.
22

López-Urı́as, F., G. M. Pastor, and K. H. Bennemann. "Calculation of finite temperature magnetic properties of clusters." Journal of Applied Physics 87, no. 9 (2000): 4909–11. http://dx.doi.org/10.1063/1.373199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Spínola, Miguel, Shashank Saxena, Prateek Gupta, Brandon Runnels, and Dennis M. Kochmann. "Finite-temperature grain boundary properties from quasistatic atomistics." Computational Materials Science 244 (September 2024): 113270. http://dx.doi.org/10.1016/j.commatsci.2024.113270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Haglin, Kevin L., та Charles Gale. "Properties of the φ-meson at finite temperature". Nuclear Physics B 421, № 3 (1994): 613–31. http://dx.doi.org/10.1016/0550-3213(94)90519-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Hasegawa, H. "Finite-temperature surface properties of itinerant-electron ferromagnets." Journal of Physics F: Metal Physics 16, no. 3 (1986): 347–64. http://dx.doi.org/10.1088/0305-4608/16/3/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kucharek, H., P. Ring, and P. Schuck. "Pairing properties of nuclear matter at finite temperature." Zeitschrift f�r Physik A Atomic Nuclei 334, no. 2 (1989): 119–24. http://dx.doi.org/10.1007/bf01294212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Baranov, M. A., V. S. Gorbachev, and A. V. Senatorov. "Properties of the Josephson medium at finite temperature." Physica C: Superconductivity 179, no. 1-3 (1991): 52–58. http://dx.doi.org/10.1016/0921-4534(91)90010-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sun, Z., and J. H. Hetherington. "Magnetic properties of solid 3He at finite temperature." Journal of Low Temperature Physics 86, no. 5-6 (1992): 303–9. http://dx.doi.org/10.1007/bf00121500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lutz, M., S. Klimt, and W. Weise. "Meson properties at finite temperature and baryon density." Nuclear Physics A 542, no. 4 (1992): 521–58. http://dx.doi.org/10.1016/0375-9474(92)90256-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Jaklic, J., and P. Prelovsek. "ChemInform Abstract: Finite-Temperature Properties of Doped Antiferromagnets." ChemInform 31, no. 42 (2000): no. http://dx.doi.org/10.1002/chin.200042249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Frick, M., and T. Schneider. "On the theory of layered high-temperature superconductors: Finite temperature properties." Zeitschrift f�r Physik B Condensed Matter 78, no. 2 (1990): 159–68. http://dx.doi.org/10.1007/bf01307831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Shu, Song, and Jia-Rong Li. "Studying the baryon properties through chiral soliton model at finite temperature and density." International Journal of Modern Physics: Conference Series 29 (January 2014): 1460213. http://dx.doi.org/10.1142/s2010194514602130.

Pełny tekst źródła
Streszczenie:
We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.
Style APA, Harvard, Vancouver, ISO itp.
33

Iwasaki, Y., K. Kanaya, S. Sakai, and T. Yoshié. "Chiral properties of dynamical Wilson quarks at finite temperature." Physical Review Letters 67, no. 12 (1991): 1494–97. http://dx.doi.org/10.1103/physrevlett.67.1494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Stoffel, A. J., and M. Gulácsi. "Finite temperature properties of a supersolid: a RPA approach." European Physical Journal B 67, no. 2 (2009): 169–81. http://dx.doi.org/10.1140/epjb/e2009-00018-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lesar, R., and J. M. Rickman. "Finite-temperature properties of materials from analytical statistical mechanics." Philosophical Magazine B 73, no. 4 (1996): 627–39. http://dx.doi.org/10.1080/13642819608239140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Umeda, Takashi, and Hideo Matsufuru. "Charmonium properties at finite temperature on quenched anisotropic lattices." Nuclear Physics B - Proceedings Supplements 140 (March 2005): 547–49. http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Caldas, A., P. J. von Ranke, and N. A. de Oliveira. "Finite temperature magnetic properties of the PrCo2 intermetallic compound." Physica B: Condensed Matter 253, no. 1-2 (1998): 158–62. http://dx.doi.org/10.1016/s0921-4526(98)00055-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Rosenstein, B., A. D. Speliotopoulos, and H. L. Yu. "Some properties of the finite temperature chiral phase transition." Physical Review D 49, no. 12 (1994): 6822–28. http://dx.doi.org/10.1103/physrevd.49.6822.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Craco, Luis. "Finite-temperature properties of the two-orbital Anderson model." Journal of Physics: Condensed Matter 11, no. 44 (1999): 8689–95. http://dx.doi.org/10.1088/0953-8984/11/44/307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Borisenko, O., V. Petrov, and G. Zinovjev. "Confining properties of noncompact gauge theories at finite temperature." Nuclear Physics B - Proceedings Supplements 42, no. 1-3 (1995): 466–68. http://dx.doi.org/10.1016/0920-5632(95)00281-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

MENEZES, DÉBORA P., and C. PROVIDÊNCIA. "FINITE TEMPERATURE EQUATIONS OF STATE FOR MIXED STARS." International Journal of Modern Physics D 13, no. 07 (2004): 1249–53. http://dx.doi.org/10.1142/s0218271804005389.

Pełny tekst źródła
Streszczenie:
We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.
Style APA, Harvard, Vancouver, ISO itp.
42

Teo, Lee Peng. "Dispersive Correction to Casimir Force at Finite Temperature." Applied Mechanics and Materials 110-116 (October 2011): 465–71. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.465.

Pełny tekst źródła
Streszczenie:
We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.
Style APA, Harvard, Vancouver, ISO itp.
43

Apalowo, RK, D. Chronopoulos, M. Ichchou, Y. Essa, and F. Martin De La Escalera. "The impact of temperature on wave interaction with damage in composite structures." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 16 (2017): 3042–56. http://dx.doi.org/10.1177/0954406217718217.

Pełny tekst źródła
Streszczenie:
The increased use of composite materials in modern aerospace and automotive structures, and the broad range of launch vehicles’ operating temperature imply a great temperature range for which the structures has to be frequently and thoroughly inspected. A thermal mechanical analysis is used to experimentally measure the temperature-dependent mechanical properties of a composite layered panel in the range of −100 ℃ to 150 ℃. A hybrid wave finite element/finite element computational scheme is developed to calculate the temperature-dependent wave propagation and interaction properties of a system
Style APA, Harvard, Vancouver, ISO itp.
44

Apalowo, Rilwan Kayode, Dimitrios Chronopoulos, and Muhammed Malik. "The influence of temperature on wave scattering of damaged segments within composite structures." MATEC Web of Conferences 211 (2018): 19005. http://dx.doi.org/10.1051/matecconf/201821119005.

Pełny tekst źródła
Streszczenie:
The increased use of composite materials in modern aerospace and automotive structures, and the broad range of launch vehicles’ operating temperature imply a great temperature range for which the structures has to be frequently and thoroughly inspected. A thermal mechanical analysis is used to experimentally measure the temperature-dependent mechanical properties of a composite layered panel in the range of -100°C to 150°C. A hybrid wave finite element/finite element computational scheme is developed to calculate the temperature-dependent wave propagation and interaction properties of a system
Style APA, Harvard, Vancouver, ISO itp.
45

Rickman, J. M., R. Najafabadi, L. Zhao, and D. J. Srolovitz. "Finite-temperature properties of perfect crystals and defects from zero-temperature energy minimization." Journal of Physics: Condensed Matter 4, no. 21 (1992): 4923–34. http://dx.doi.org/10.1088/0953-8984/4/21/008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Abu-Shady, M. "Multidimensional Schrödinger Equation and Spectral Properties of Heavy-Quarkonium Mesons at Finite Temperature." Advances in Mathematical Physics 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/4935940.

Pełny tekst źródła
Streszczenie:
TheN-radial Schrödinger equation is analytically solved at finite temperature. The analytic exact iteration method (AEIM) is employed to obtain the energy eigenvalues and wave functions for all statesnandl. The application of present results to the calculation of charmonium and bottomonium masses at finite temperature is also presented. The behavior of the charmonium and bottomonium masses is in qualitative agreement with other theoretical methods. We conclude that the solution of the Schrödinger equation plays an important role at finite temperature that the analysis of the quarkonium states
Style APA, Harvard, Vancouver, ISO itp.
47

Fantoni, Riccardo. "One-component fermion plasma on a sphere at finite temperature." International Journal of Modern Physics C 29, no. 08 (2018): 1850064. http://dx.doi.org/10.1142/s012918311850064x.

Pełny tekst źródła
Streszczenie:
We study through a computer experiment, using the restricted path integral Monte Carlo method, a one-component fermion plasma on a sphere at finite, nonzero, temperature. We extract thermodynamic properties like the kinetic and internal energy per particle and structural properties like the radial distribution function. This study could be relevant for the characterization and better understanding of the electronic properties of hollow graphene spheres.
Style APA, Harvard, Vancouver, ISO itp.
48

Linh, Dang Khanh, and Nguyen Quoc Khanh. "Transport properties of bilayer graphene due to charged impurity scattering: Temperature-dependent screening and substrate effects." International Journal of Modern Physics B 32, no. 06 (2018): 1850064. http://dx.doi.org/10.1142/s0217979218500649.

Pełny tekst źródła
Streszczenie:
We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas–Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower S[Formula: see text]. Using the finite-temperature RPA, we calculate temperature and
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Jun, Fu Kun Liu, Tai Jun Liu, Cai Xia Guo, and Xiang Yue Ying. "Simulation on the Temperature Properties of EAST Lower Hybrid Wave Antenna." Applied Mechanics and Materials 716-717 (December 2014): 1326–29. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.1326.

Pełny tekst źródła
Streszczenie:
A method for building the finite element model of the lower hybrid wave antenna was proposed according to the situation of the Experimental Advanced Superconducting Tokamak (EAST) and its LHW antenna. Temperature properties of 2.45GHz lower hybrid wave antenna on EAST are investigated. The temperature distribution of antenna is performed using the finite element code. The influences of some parameters on the temperature of the antenna are studied and discussed. The simulated results lay the solid foundation for design and improvement for the lower hybrid wave antenna.
Style APA, Harvard, Vancouver, ISO itp.
50

Feuston, Bradley P., Wanda Andreoni, Michele Parrinello, and Enrico Clementi. "Electronic and vibrational properties ofC60at finite temperature fromab initiomolecular dynamics." Physical Review B 44, no. 8 (1991): 4056–59. http://dx.doi.org/10.1103/physrevb.44.4056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!