Artykuły w czasopismach na temat „Fixed-wing UAV guidance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 43 najlepszych artykułów w czasopismach naukowych na temat „Fixed-wing UAV guidance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Israr, Amber, Eman H. Alkhammash, and Myriam Hadjouni. "Guidance, Navigation, and Control for Fixed-Wing UAV." Mathematical Problems in Engineering 2021 (October 16, 2021): 1–18. http://dx.doi.org/10.1155/2021/4355253.
Pełny tekst źródłaZhai, Rui Yong, Wen Dong Zhang, Zhao Ying Zhou, Sheng Bo Sang, and Pei Wei Li. "Trajectory Tracking Control for Micro Unmanned Aerial Vehicles." Advanced Materials Research 798-799 (September 2013): 448–51. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.448.
Pełny tekst źródłaWang, Shuo, Ziyang Zhen, Ju Jiang, and Xinhua Wang. "Flight Tests of Autopilot Integrated with Fault-Tolerant Control of a Small Fixed-Wing UAV." Mathematical Problems in Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/2141482.
Pełny tekst źródłaIong, P. T., S. H. Chen, and Y. Yang. "Vision guidance of a fixed wing UAV using a single camera configuration." Aeronautical Journal 117, no. 1188 (2013): 147–73. http://dx.doi.org/10.1017/s0001924000007922.
Pełny tekst źródłaXiong, Wei, Zhao Ying Zhou, and Xiao Yan Liu. "Study of Low Cost Micro Autopilot for Fixed-Wing UAV." Advanced Materials Research 317-319 (August 2011): 1672–76. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.1672.
Pełny tekst źródłaLee, C.-S., and F.-B. Hsiao. "Implementation of vision-based automatic guidance system on a fixed-wing unmanned aerial vehicle." Aeronautical Journal 116, no. 1183 (2012): 895–914. http://dx.doi.org/10.1017/s000192400000734x.
Pełny tekst źródłaDeng, Zhao, Zhiming Guo, Liaoni Wu, and Yancheng You. "Trajectory Planning for Emergency Landing of VTOL Fixed-Wing Unmanned Aerial Vehicles." Mobile Information Systems 2021 (November 29, 2021): 1–15. http://dx.doi.org/10.1155/2021/6289822.
Pełny tekst źródłaChen, Chao, and Jiali Tan. "Path Following for UAV using Nonlinear Model Predictive Control." Journal of Physics: Conference Series 2530, no. 1 (2023): 012021. http://dx.doi.org/10.1088/1742-6596/2530/1/012021.
Pełny tekst źródłaMat, Amir Rasydan, Liew Mun How, Omar Kassim Ariff, M. Amzari M. Zhahir, and Ramly Mohd Ajir. "Autonomous Aerial Hard Docking of Fixed and Rotary Wing UAVs: Task Assessment and Solution Architecture." Applied Mechanics and Materials 629 (October 2014): 176–81. http://dx.doi.org/10.4028/www.scientific.net/amm.629.176.
Pełny tekst źródłaLee, Jehoon, and Sanghyuk Park. "Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV." Journal of the Korean Society for Aeronautical & Space Sciences 49, no. 7 (2021): 557–64. http://dx.doi.org/10.5139/jksas.2021.49.7.557.
Pełny tekst źródłaGong, Zheng, Zan Zhou, Zian Wang, Quanhui Lv, Jinfa Xu, and Yunpeng Jiang. "Coordinated Formation Guidance Law for Fixed-Wing UAVs Based on Missile Parallel Approach Method." Aerospace 9, no. 5 (2022): 272. http://dx.doi.org/10.3390/aerospace9050272.
Pełny tekst źródłaYang, Jun, Arun Geo Thomas, Satish Singh, Simone Baldi, and Ximan Wang. "A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles." Sensors 20, no. 4 (2020): 1136. http://dx.doi.org/10.3390/s20041136.
Pełny tekst źródłaZhan, Guang, Zheng Gong, Quanhui Lv, et al. "Flight Test of Autonomous Formation Management for Multiple Fixed-Wing UAVs Based on Missile Parallel Method." Drones 6, no. 5 (2022): 99. http://dx.doi.org/10.3390/drones6050099.
Pełny tekst źródłaÁngeles-Rojas, David, Omar-Jacobo Santos-Sánchez, Sergio Salazar, and Rogelio Lozano. "Finite Horizon Nonlinear Suboptimal Control for an Autonomous Soaring UAV." Mathematical Problems in Engineering 2022 (March 12, 2022): 1–15. http://dx.doi.org/10.1155/2022/2214217.
Pełny tekst źródłaKim, Myungkang, Chunggil Ra, Seungkeun Kim, and Jinyoung Suk. "Guidance and Control Algorithm Design for Terrain-Following Flight of a Fixed-Wing UAV." Journal of the Korean Society for Aeronautical & Space Sciences 51, no. 5 (2023): 299–306. http://dx.doi.org/10.5139/jksas.2023.51.5.299.
Pełny tekst źródłaXi, Yong-Zai, Gui-Xiang Liao, Ning Lu, Yong-Bo Li, and Shan Wu. "Study on the Aeromagnetic System between Fixed-Wing UAV and Unmanned Helicopter." Minerals 13, no. 5 (2023): 700. http://dx.doi.org/10.3390/min13050700.
Pełny tekst źródłaChen, Yang, Nan Li, Wei Zeng, and Yongliang Wu. "Curved Path Following Control for a Small Fixed-Wing UAV with Parameters Adaptation." Applied Sciences 12, no. 9 (2022): 4187. http://dx.doi.org/10.3390/app12094187.
Pełny tekst źródłaMuslimov, Tagir Z., and Rustem A. Munasypov. "Multi-UAV cooperative target tracking via consensus-based guidance vector fields and fuzzy MRAC." Aircraft Engineering and Aerospace Technology 93, no. 7 (2021): 1204–12. http://dx.doi.org/10.1108/aeat-02-2021-0058.
Pełny tekst źródłaSafwat, Ehab, Weiguo Zhang, Ahmed Mohsen, and Mohamed Kassem. "Design and Analysis of a Robust UAV Flight Guidance and Control System Based on a Modified Nonlinear Dynamic Inversion." Applied Sciences 9, no. 17 (2019): 3600. http://dx.doi.org/10.3390/app9173600.
Pełny tekst źródłaLee, C. S., W. L. Chan, S. S. Jan, and F. B. Hsiao. "A linear-quadratic-Gaussian approach for automatic flight control of fixed-wing unmanned air vehicles." Aeronautical Journal 115, no. 1163 (2011): 29–41. http://dx.doi.org/10.1017/s0001924000005340.
Pełny tekst źródłaWu, Kun, Zhihao Cai, Jiang Zhao, and Yingxun Wang. "Target Tracking Based on a Nonsingular Fast Terminal Sliding Mode Guidance Law by Fixed-Wing UAV." Applied Sciences 7, no. 4 (2017): 333. http://dx.doi.org/10.3390/app7040333.
Pełny tekst źródłaSamaniego, Franklin, Javier Sanchis, Sergio Garcia-Nieto, and Raul Simarro. "Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs." Electronics 9, no. 1 (2019): 51. http://dx.doi.org/10.3390/electronics9010051.
Pełny tekst źródłaDeng, Zhao, Liaoni Wu, and Yancheng You. "Modeling and Design of an Aircraft-Mode Controller for a Fixed-Wing VTOL UAV." Mathematical Problems in Engineering 2021 (September 29, 2021): 1–17. http://dx.doi.org/10.1155/2021/7902134.
Pełny tekst źródłaKayacan, Erdal, Mojtaba Ahmadieh Khanesar, Jaime Rubio-Hervas, and Mahmut Reyhanoglu. "Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks." International Journal of Aerospace Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/5402809.
Pełny tekst źródłaRuggles, Samantha, Joseph Clark, Kevin W. Franke, et al. "Comparison of SfM computer vision point clouds of a landslide derived from multiple small UAV platforms and sensors to a TLS-based model." Journal of Unmanned Vehicle Systems 4, no. 4 (2016): 246–65. http://dx.doi.org/10.1139/juvs-2015-0043.
Pełny tekst źródłaWU, Weinan, and Naigang Cui. "A distributed and integrated method for cooperative mission planning of multiple heterogeneous UAVs." Aircraft Engineering and Aerospace Technology 90, no. 9 (2018): 1403–12. http://dx.doi.org/10.1108/aeat-05-2017-0124.
Pełny tekst źródłaAlturbeh, Hamid, and James F. Whidborne. "Visual Flight Rules-Based Collision Avoidance Systems for UAV Flying in Civil Aerospace." Robotics 9, no. 1 (2020): 9. http://dx.doi.org/10.3390/robotics9010009.
Pełny tekst źródłaZhang, Zhitao, Changchuan Xie, Wei Wang, and Chao An. "An Experimental and Numerical Evaluation of the Aerodynamic Performance of a UAV Propeller Considering Pitch Motion." Drones 7, no. 7 (2023): 447. http://dx.doi.org/10.3390/drones7070447.
Pełny tekst źródłaPogorzelski, G., and F. J. Silvestre. "Autonomous soaring using a simplified MPC approach." Aeronautical Journal 123, no. 1268 (2019): 1666–700. http://dx.doi.org/10.1017/aer.2019.6.
Pełny tekst źródłaZhao, Yu, Jifeng Guo, Chengchao Bai, and Hongxing Zheng. "Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-Wing UAVs." Complexity 2021 (January 16, 2021): 1–12. http://dx.doi.org/10.1155/2021/8818013.
Pełny tekst źródłaKalra, Arti, Sreenatha Anavatti, and Radhakant Padhi. "Aggressive Formation Flying of Fixed-Wing UAVs with Differential Geometric Guidance." Unmanned Systems 05, no. 02 (2017): 97–113. http://dx.doi.org/10.1142/s2301385017500078.
Pełny tekst źródłaCoates, Erlend M., and Thor I. Fossen. "Geometric Reduced-Attitude Control of Fixed-Wing UAVs." Applied Sciences 11, no. 7 (2021): 3147. http://dx.doi.org/10.3390/app11073147.
Pełny tekst źródłaLehr, William J. "THE POTENTIAL USE OF SMALL UAS IN SPILL RESPONSE." International Oil Spill Conference Proceedings 2008, no. 1 (2008): 431–33. http://dx.doi.org/10.7901/2169-3358-2008-1-431.
Pełny tekst źródłaPark, Sanghyuk. "Rendezvous Guidance on Circular Path for Fixed-Wing UAV." International Journal of Aeronautical and Space Sciences, April 30, 2020. http://dx.doi.org/10.1007/s42405-020-00281-8.
Pełny tekst źródłaHe, Mo, Xiaogang Wang, and Naigang Cui. "Modified vector field and nonlinear guidance law for low-cost UAV path following." Aircraft Engineering and Aerospace Technology, June 22, 2022. http://dx.doi.org/10.1108/aeat-03-2019-0045.
Pełny tekst źródłaWang, Ximan, Simone Baldi, Xuewei Feng, Changwei Wu, Hongwei Xie, and Bart De Schutter. "A Fixed-Wing UAV Formation Algorithm Based on Vector Field Guidance." IEEE Transactions on Automation Science and Engineering, 2022, 1–14. http://dx.doi.org/10.1109/tase.2022.3144672.
Pełny tekst źródła"Fixed-wing UAV guidance law for ground target over-flight tracking." Journal of Systems Engineering and Electronics 30, no. 2 (2019): 384. http://dx.doi.org/10.21629/jsee.2019.02.16.
Pełny tekst źródłaZhang, Min, Pengfei Tian, Xin Chen, and Xin Wang. "Ground Target Tracking Guidance Law for Fixed-Wing Unmanned Aerial Vehicle: A Search and Capture Approach." Journal of Dynamic Systems, Measurement, and Control 139, no. 10 (2017). http://dx.doi.org/10.1115/1.4036563.
Pełny tekst źródłaSai-fei, Wu, Wang Xin-hua, Bai Jun-jie, and Tan Qing-yan. "Autonomous Landing of a Fixed Wing UAV with a Ground-based Visual Guidance System." DEStech Transactions on Engineering and Technology Research, ICMITE2016 (December 21, 2016). http://dx.doi.org/10.12783/dtetr/icmite20162016/4599.
Pełny tekst źródłaGryte, Kristoffer, Martin L. Sollie, and Tor Arne Johansen. "Control System Architecture for Automatic Recovery of Fixed-Wing Unmanned Aerial Vehicles in a Moving Arrest System." Journal of Intelligent & Robotic Systems 103, no. 4 (2021). http://dx.doi.org/10.1007/s10846-021-01521-z.
Pełny tekst źródłaKim, Taerim, and Sanghyuk Park. "Fast Converging Circling Guidance for Fixed-Wing UAVs." International Journal of Aeronautical and Space Sciences, June 22, 2023. http://dx.doi.org/10.1007/s42405-023-00625-0.
Pełny tekst źródłaKim, Suhyeon, Hyeongjun Cho, and Dongwon Jung. "Circular Formation Guidance of Fixed-wing UAVs using Mesh Network." IEEE Access, 2022, 1. http://dx.doi.org/10.1109/access.2022.3218673.
Pełny tekst źródłaYang, Yachao, Chang Liu, Jie Li, et al. "Design, implementation, and verification of a low‐cost terminal guidance system for small fixed‐wing UAVs." Journal of Field Robotics, January 12, 2021. http://dx.doi.org/10.1002/rob.22012.
Pełny tekst źródła