Artykuły w czasopismach na temat „Fleet of UAVs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fleet of UAVs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Фесенко, Герман Вікторович, та Вячеслав Сергійович Харченко. "МОДЕЛІ НАДІЙНОСТІ УГРУПОВАНЬ ФЛОТІВ БПЛА З КОВЗНИМ РЕЗЕРВУВАННЯМ ДЛЯ МОНІТОРИНГУ ПОТЕНЦІЙНО НЕБЕЗПЕЧНИХ ОБ’ЄКТІВ". RADIOELECTRONIC AND COMPUTER SYSTEMS, № 2 (21 червня 2019): 147–56. http://dx.doi.org/10.32620/reks.2019.2.14.
Pełny tekst źródłaThibbotuwawa, Bocewicz, Zbigniew, and Nielsen. "A Solution Approach for UAV Fleet Mission Planning in Changing Weather Conditions." Applied Sciences 9, no. 19 (2019): 3972. http://dx.doi.org/10.3390/app9193972.
Pełny tekst źródłaGodio, Simone, Stefano Primatesta, Giorgio Guglieri, and Fabio Dovis. "A Bioinspired Neural Network-Based Approach for Cooperative Coverage Planning of UAVs." Information 12, no. 2 (2021): 51. http://dx.doi.org/10.3390/info12020051.
Pełny tekst źródłaLarson, Jonathan, Paul Isihara, Gabriel Flores, et al. "A priori assessment of a smart-navigated unmanned aerial vehicle disaster cargo fleet." SIMULATION 96, no. 8 (2020): 641–53. http://dx.doi.org/10.1177/0037549720921447.
Pełny tekst źródłaThibbotuwawa, Amila, Grzegorz Bocewicz, Grzegorz Radzki, Peter Nielsen, and Zbigniew Banaszak. "UAV Mission Planning Resistant to Weather Uncertainty." Sensors 20, no. 2 (2020): 515. http://dx.doi.org/10.3390/s20020515.
Pełny tekst źródłaGadiraju, Divija Swetha, Prasenjit Karmakar, Vijay K. Shah, and Vaneet Aggarwal. "GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments." Information 15, no. 8 (2024): 477. http://dx.doi.org/10.3390/info15080477.
Pełny tekst źródłaKats, Vladimir, and Eugene Levner. "Maximizing the Average Environmental Benefit of a Fleet of Drones under a Periodic Schedule of Tasks." Algorithms 17, no. 7 (2024): 283. http://dx.doi.org/10.3390/a17070283.
Pełny tekst źródłaBit-Monnot, Arthur, Rafael Bailon-Ruiz, and Simon Lacroix. "A Local Search Approach to Observation Planning with Multiple UAVs." Proceedings of the International Conference on Automated Planning and Scheduling 28 (June 15, 2018): 437–45. http://dx.doi.org/10.1609/icaps.v28i1.13924.
Pełny tekst źródłaJosé-Torra, Ferran, Antonio Pascual-Iserte, and Josep Vidal. "A Service-Constrained Positioning Strategy for an Autonomous Fleet of Airborne Base Stations." Sensors 18, no. 10 (2018): 3411. http://dx.doi.org/10.3390/s18103411.
Pełny tekst źródłaHe, Ping Chuan, and Shu Ling Dai. "Parallel Niche Genetic Algorithm for UAV Fleet Stealth Coverage 3D Corridors Real-Time Planning." Advanced Materials Research 846-847 (November 2013): 1189–96. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1189.
Pełny tekst źródłaZhang, Yongchao, Wei Xu, Helin Ye, and Zhuoyong Shi. "A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA." Drones 9, no. 7 (2025): 501. https://doi.org/10.3390/drones9070501.
Pełny tekst źródłaSlim, M., M. Saied, H. Mazeh, H. Shraim, and C. Francis. "Fault-Tolerant Control Design for Multirotor UAVs Formation Flight." Giroskopiya i Navigatsiya 29, no. 2 (2021): 78–96. http://dx.doi.org/10.17285/0869-7035.0064.
Pełny tekst źródłaGrasso, Christian, and Giovanni Schembra. "A Fleet of MEC UAVs to Extend a 5G Network Slice for Video Monitoring with Low-Latency Constraints." Journal of Sensor and Actuator Networks 8, no. 1 (2019): 3. http://dx.doi.org/10.3390/jsan8010003.
Pełny tekst źródłaZaitseva, Elena, Vitaly Levashenko, Ravil Mukhamediev, Nicolae Brinzei, Andriy Kovalenko, and Adilkhan Symagulov. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis." Mathematics 11, no. 11 (2023): 2551. http://dx.doi.org/10.3390/math11112551.
Pełny tekst źródłaRinaldi, Marco, and Stefano Primatesta. "Comprehensive Task Optimization Architecture for Urban UAV-Based Intelligent Transportation System." Drones 8, no. 9 (2024): 473. http://dx.doi.org/10.3390/drones8090473.
Pełny tekst źródłaBassolillo, Salvatore Rosario, Egidio D’Amato, and Immacolata Notaro. "A Consensus-Driven Distributed Moving Horizon Estimation Approach for Target Detection Within Unmanned Aerial Vehicle Formations in Rescue Operations." Drones 9, no. 2 (2025): 127. https://doi.org/10.3390/drones9020127.
Pełny tekst źródłaEkechi, Chijioke C., Tarek Elfouly, Ali Alouani, and Tamer Khattab. "A Survey on UAV Control with Multi-Agent Reinforcement Learning." Drones 9, no. 7 (2025): 484. https://doi.org/10.3390/drones9070484.
Pełny tekst źródłaReineman, Benjamin D., Luc Lenain, and W. Kendall Melville. "The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes." Journal of Atmospheric and Oceanic Technology 33, no. 9 (2016): 2029–52. http://dx.doi.org/10.1175/jtech-d-15-0019.1.
Pełny tekst źródłaLagkas, Thomas, Vasileios Argyriou, Stamatia Bibi, and Panagiotis Sarigiannidis. "UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”." Sensors 18, no. 11 (2018): 4015. http://dx.doi.org/10.3390/s18114015.
Pełny tekst źródłaBocewicz, Grzegorz, Grzegorz Radzki, Izabela Nielsen, Marcin Witczak, and Banaszak Zbigniew. "UAVs fleet mission planning robust to changing weather conditions." IFAC-PapersOnLine 53, no. 2 (2020): 10518–24. http://dx.doi.org/10.1016/j.ifacol.2020.12.2798.
Pełny tekst źródłaBailon-Ruiz, Rafael, Arthur Bit-Monnot, and Simon Lacroix. "Real-time wildfire monitoring with a fleet of UAVs." Robotics and Autonomous Systems 152 (June 2022): 104071. http://dx.doi.org/10.1016/j.robot.2022.104071.
Pełny tekst źródłaTipantuña, Christian, Xavier Hesselbach, Victor Sánchez-Aguero, Francisco Valera, Ivan Vidal, and Borja Nogales. "An NFV-Based Energy Scheduling Algorithm for a 5G Enabled Fleet of Programmable Unmanned Aerial Vehicles." Wireless Communications and Mobile Computing 2019 (February 20, 2019): 1–20. http://dx.doi.org/10.1155/2019/4734821.
Pełny tekst źródłaSu, Wenjia, Min Gao, Xinbao Gao, and Zhaolong Xuan. "Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning." International Journal of Aerospace Engineering 2024 (May 27, 2024): 1–14. http://dx.doi.org/10.1155/2024/5114696.
Pełny tekst źródłaFelli, Lorenzo, Romeo Giuliano, Andrea De Negri, Francesco Terlizzi, Franco Mazzenga, and Alessandro Vizzarri. "Maximal LoRa Range for Unmanned Aerial Vehicle Fleet Service in Different Environmental Conditions." IoT 5, no. 3 (2024): 509–23. http://dx.doi.org/10.3390/iot5030023.
Pełny tekst źródłaLissandrini, Nicola, Giulia Michieletto, Riccardo Antonello, Marta Galvan, Alberto Franco, and Angelo Cenedese. "Cooperative Optimization of UAVs Formation Visual Tracking." Robotics 8, no. 3 (2019): 52. http://dx.doi.org/10.3390/robotics8030052.
Pełny tekst źródłaAlmeida, M., H. Hildmann, and G. Solmaz. "DISTRIBUTED UAV-SWARM-BASED REAL-TIME GEOMATIC DATA COLLECTION UNDER DYNAMICALLY CHANGING RESOLUTION REQUIREMENTS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W6 (August 23, 2017): 5–12. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w6-5-2017.
Pełny tekst źródłaZemlianko, H., and V. Kharchenko. "Cyber Security Systems of Highly Functional Uav Fleets for Monitoring Critical Infrastructure: Analysis of Disruptions, Attacks and Counterapproaches." Èlektronnoe modelirovanie 46, no. 1 (2024): 41–54. http://dx.doi.org/10.15407/emodel.46.01.041.
Pełny tekst źródłaKabashkin, Igor. "Availability of Services in Wireless Sensor Network with Aerial Base Station Placement." Journal of Sensor and Actuator Networks 12, no. 3 (2023): 39. http://dx.doi.org/10.3390/jsan12030039.
Pełny tekst źródłaBousbaa, Fatima Zohra, Chaker Abdelaziz Kerrache, Zohra Mahi, Abdou El Karim Tahari, Nasreddine Lagraa, and Mohamed Bachir Yagoubi. "GeoUAVs: A new geocast routing protocol for fleet of UAVs." Computer Communications 149 (January 2020): 259–69. http://dx.doi.org/10.1016/j.comcom.2019.10.026.
Pełny tekst źródłaCalamoneri, Tiziana, Federico Corò, and Simona Mancini. "Autonomous data detection and inspection with a fleet of UAVs." Computers & Operations Research 168 (August 2024): 106678. http://dx.doi.org/10.1016/j.cor.2024.106678.
Pełny tekst źródłaBemposta Rosende, Sergio, Javier Sánchez-Soriano, Carlos Quiterio Gómez Muñoz, and Javier Fernández Andrés. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants." Energies 13, no. 21 (2020): 5712. http://dx.doi.org/10.3390/en13215712.
Pełny tekst źródłaHan, Peng, Xinyue Yang, Kin Huat Low, and Yifei Zhao. "Parametric Analysis of Landing Capacity for UAV Fleet Operations with Specific Airspace Structures and Rule-Based Constraints." Drones 8, no. 12 (2024): 770. https://doi.org/10.3390/drones8120770.
Pełny tekst źródłaDEWMINI, Janani, W. Madushan FERNANDO, Izabela Iwa NIELSEN, Grzegorz BOCEWICZ, Amila THIBBOTUWAWA, and Zbigniew BANASZAK. "IDENTIFYING THE POTENTIAL OF UNMANNED AERIAL VEHICLE ROUTING FOR BLOOD DISTRIBUTION IN EMERGENCY REQUESTS." Applied Computer Science 19, no. 4 (2023): 68–87. http://dx.doi.org/10.35784/acs-2023-36.
Pełny tekst źródłaAlhaqbani, Amjaad, Heba Kurdi, and Kamal Youcef-Toumi. "Fish-Inspired Task Allocation Algorithm for Multiple Unmanned Aerial Vehicles in Search and Rescue Missions." Remote Sensing 13, no. 1 (2020): 27. http://dx.doi.org/10.3390/rs13010027.
Pełny tekst źródłaBono, Antonio, Luigi D’Alfonso, Giuseppe Fedele, Anselmo Filice, and Enrico Natalizio. "Path Planning and Control of a UAV Fleet in Bridge Management Systems." Remote Sensing 14, no. 8 (2022): 1858. http://dx.doi.org/10.3390/rs14081858.
Pełny tekst źródłaIbenthal, Julius, Michel Kieffer, Luc Meyer, Hélène Piet-Lahanier, and Sébastien Reynaud. "Bounded-error target localization and tracking using a fleet of UAVs." Automatica 132 (October 2021): 109809. http://dx.doi.org/10.1016/j.automatica.2021.109809.
Pełny tekst źródłaFeng, Yi, Cong Zhang, Stanley Baek, Samir Rawashdeh, and Alireza Mohammadi. "Autonomous Landing of a UAV on a Moving Platform Using Model Predictive Control." Drones 2, no. 4 (2018): 34. http://dx.doi.org/10.3390/drones2040034.
Pełny tekst źródłaPham, Thiem V., and Thanh Dong Nguyen. "Path-Following Formation of Fixed-Wing UAVs under Communication Delay: A Vector Field Approach." Drones 8, no. 6 (2024): 237. http://dx.doi.org/10.3390/drones8060237.
Pełny tekst źródłaAlvear, Oscar, Nicola Roberto Zema, Enrico Natalizio, and Carlos T. Calafate. "Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility." Journal of Advanced Transportation 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/8204353.
Pełny tekst źródłaSun, Xiaolei, Naiming Qi, and Weiran Yao. "Boolean Networks-Based Auction Algorithm for Task Assignment of Multiple UAVs." Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/425356.
Pełny tekst źródłaRadzki, Grzegorz, Izabela Nielsen, Paulina Golińska-Dawson, Grzegorz Bocewicz, and Zbigniew Banaszak. "Reactive UAV Fleet’s Mission Planning in Highly Dynamic and Unpredictable Environments." Sustainability 13, no. 9 (2021): 5228. http://dx.doi.org/10.3390/su13095228.
Pełny tekst źródłaHassan, Zohaib, Syed Irtiza Ali Shah, and Ahsan Sarwar Rana. "Charging Station Distribution Optimization Using Drone Fleet in a Disaster." Journal of Robotics 2022 (July 31, 2022): 1–13. http://dx.doi.org/10.1155/2022/7329346.
Pełny tekst źródłaLoroch, Leszek, and Andrzej Żyluk. "New Technologies for Air Traffic Security." Journal of Konbin 7, no. 4 (2008): 95–112. http://dx.doi.org/10.2478/v10040-008-0081-z.
Pełny tekst źródłaPerez-Montenegro, Carlos, Matteo Scanavino, Nicoletta Bloise, Elisa Capello, Giorgio Guglieri, and Alessandro Rizzo. "A Mission Coordinator Approach for a Fleet of UAVs in Urban Scenarios." Transportation Research Procedia 35 (2018): 110–19. http://dx.doi.org/10.1016/j.trpro.2018.12.018.
Pełny tekst źródłaEl Ferik, Sami, and Olapido Raphael Thompson. "Biologically Inspired Control Of A Fleet Of Uavs With Threat Evasion Strategy." Asian Journal of Control 18, no. 6 (2016): 2283–300. http://dx.doi.org/10.1002/asjc.1324.
Pełny tekst źródłaZhou, Jinlun, Honghai Zhang, Mingzhuang Hua, Fei Wang, and Jia Yi. "P-DRL: A Framework for Multi-UAVs Dynamic Formation Control under Operational Uncertainty and Unknown Environment." Drones 8, no. 9 (2024): 475. http://dx.doi.org/10.3390/drones8090475.
Pełny tekst źródłaGrzegorz, Radzki, Bocewicz Grzegorz, Dybala Bogdan, and Banaszak Zbigniew. "Reactive Planning-Driven Approach to Online UAVs Mission Rerouting and Rescheduling." Applied Sciences 11, no. 19 (2021): 8898. http://dx.doi.org/10.3390/app11198898.
Pełny tekst źródłaCordeiro, Thiago F. K., João Y. Ishihara, and Henrique C. Ferreira. "A Decentralized Low-Chattering Sliding Mode Formation Flight Controller for a Swarm of UAVs." Sensors 20, no. 11 (2020): 3094. http://dx.doi.org/10.3390/s20113094.
Pełny tekst źródłaShuaibu, Abdullahi Sani, Ashraf Sharif Mahmoud, and Tarek Rahil Sheltami. "A Review of Last-Mile Delivery Optimization: Strategies, Technologies, Drone Integration, and Future Trends." Drones 9, no. 3 (2025): 158. https://doi.org/10.3390/drones9030158.
Pełny tekst źródłaHtiouech, Skander, Khalil Chebil, Mahdi Khemakhem, Fidaa Abed, and Monaji H. Alkiani. "An Extended Model for the UAVs-Assisted Multiperiodic Crowd Tracking Problem." Complexity 2023 (February 1, 2023): 1–14. http://dx.doi.org/10.1155/2023/3001812.
Pełny tekst źródła