Artykuły w czasopismach na temat „Flexible mechanical metamaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flexible mechanical metamaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhai, Zirui, Yong Wang, and Hanqing Jiang. "Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness." Proceedings of the National Academy of Sciences 115, no. 9 (2018): 2032–37. http://dx.doi.org/10.1073/pnas.1720171115.
Pełny tekst źródłaZheng, Xiaoyang, Koichiro Uto, Wei-Hsun Hu, Ta-Te Chen, Masanobu Naito, and Ikumu Watanabe. "Reprogrammable flexible mechanical metamaterials." Applied Materials Today 29 (December 2022): 101662. http://dx.doi.org/10.1016/j.apmt.2022.101662.
Pełny tekst źródłaYasuda, Hiromi, Hang Shu, Weijian Jiao, Vincent Tournat, and Jordan Raney. "Collisions of nonlinear waves in flexible mechanical metamaterials." Journal of the Acoustical Society of America 151, no. 4 (2022): A41. http://dx.doi.org/10.1121/10.0010592.
Pełny tekst źródłaJin, Eunji, In Seong Lee, Dongwook Kim, et al. "Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial." Science Advances 5, no. 5 (2019): eaav4119. http://dx.doi.org/10.1126/sciadv.aav4119.
Pełny tekst źródłaZhang, Zhan, Christopher Brandt, Jean Jouve, et al. "Computational Design of Flexible Planar Microstructures." ACM Transactions on Graphics 42, no. 6 (2023): 1–16. http://dx.doi.org/10.1145/3618396.
Pełny tekst źródłaDykstra, David M. J., Shahram Janbaz, and Corentin Coulais. "The extreme mechanics of viscoelastic metamaterials." APL Materials 10, no. 8 (2022): 080702. http://dx.doi.org/10.1063/5.0094224.
Pełny tekst źródłaDeng, B., J. R. Raney, K. Bertoldi, and V. Tournat. "Nonlinear waves in flexible mechanical metamaterials." Journal of Applied Physics 130, no. 4 (2021): 040901. http://dx.doi.org/10.1063/5.0050271.
Pełny tekst źródłaRafsanjani, Ahmad, Katia Bertoldi, and André R. Studart. "Programming soft robots with flexible mechanical metamaterials." Science Robotics 4, no. 29 (2019): eaav7874. http://dx.doi.org/10.1126/scirobotics.aav7874.
Pełny tekst źródłaWu, Lingling, Bo Li, and Ji Zhou. "Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial." MRS Advances 3, no. 8-9 (2018): 405–10. http://dx.doi.org/10.1557/adv.2018.217.
Pełny tekst źródłaSlobozhanyuk, Alexey P., Mikhail Lapine, David A. Powell, et al. "Flexible Helices for Nonlinear Metamaterials." Advanced Materials 25, no. 25 (2013): 3409–12. http://dx.doi.org/10.1002/adma.201300840.
Pełny tekst źródłaZhou, Xiang, Shixi Zang, and Zhong You. "Origami mechanical metamaterials based on the Miura-derivative fold patterns." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2191 (2016): 20160361. http://dx.doi.org/10.1098/rspa.2016.0361.
Pełny tekst źródłaDemiquel, A., V. Achilleos, G. Theocharis, and V. Tournat. "Envelope vector solitons in nonlinear flexible mechanical metamaterials." Wave Motion 131 (December 2024): 103394. http://dx.doi.org/10.1016/j.wavemoti.2024.103394.
Pełny tekst źródłaXue, Chenhao, Nan Li, Shenggui Chen, Jiahua Liang, and Wurikaixi Aiyiti. "The Laser Selective Sintering Controlled Forming of Flexible TPMS Structures." Materials 16, no. 24 (2023): 7565. http://dx.doi.org/10.3390/ma16247565.
Pełny tekst źródłaTiwari, Ashish. "Future Directions and Research Gaps in Enhancing the Optical Properties of PMMA with Metamaterials." International Journal of Multidisciplinary Research in Science, Engineering and Technology 2, no. 12 (2023): 2303–9. http://dx.doi.org/10.15680/ijmrset.2019.0212013.
Pełny tekst źródłaPagliocca, Nicholas, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef, and Behrad Koohbor. "Flexible planar metamaterials with tunable Poisson’s ratios." Materials & Design 215 (March 2022): 110446. http://dx.doi.org/10.1016/j.matdes.2022.110446.
Pełny tekst źródłaTiwari, Ashish. "Enhancing the Optical Properties of PMMA with Metamaterials: Applications and Performance Analysis." International Journal of Multidisciplinary Research in Science, Engineering and Technology 3, no. 12 (2023): 1342–49. http://dx.doi.org/10.15680/ijmrset.2020.0312019.
Pełny tekst źródłaMazur, Ekaterina, and Igor Shishkovsky. "Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials." Materials 15, no. 16 (2022): 5600. http://dx.doi.org/10.3390/ma15165600.
Pełny tekst źródłaQi, Wu, Wang Zhigang, Yang Yu, Lu Yifei, Shi Xintong, and Bao Panpan. "Research on compliant wing design technology based on mechanical metamaterials." Journal of Physics: Conference Series 2956, no. 1 (2025): 012029. https://doi.org/10.1088/1742-6596/2956/1/012029.
Pełny tekst źródłaHu, Fuwen, and Tian Li. "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype." Actuators 10, no. 4 (2021): 67. http://dx.doi.org/10.3390/act10040067.
Pełny tekst źródłaRen, Yulin, Guodong Hao, Xinsa Zhao, and Jianning Han. "A Tunable Z-Shaped Channel Gradient Metamaterial for Enhanced Detection of Weak Acoustic Signals." Crystals 15, no. 3 (2025): 216. https://doi.org/10.3390/cryst15030216.
Pełny tekst źródłaLiang, Xudong, and Alfred J. Crosby. "Uniaxial stretching mechanics of cellular flexible metamaterials." Extreme Mechanics Letters 35 (February 2020): 100637. http://dx.doi.org/10.1016/j.eml.2020.100637.
Pełny tekst źródłaDeng, Bolei, Siqin Yu, Antonio E. Forte, Vincent Tournat, and Katia Bertoldi. "Characterization, stability, and application of domain walls in flexible mechanical metamaterials." Proceedings of the National Academy of Sciences 117, no. 49 (2020): 31002–9. http://dx.doi.org/10.1073/pnas.2015847117.
Pełny tekst źródłaHu, Songtao, Xiaobao Cao, Tom Reddyhoff, et al. "Liquid repellency enhancement through flexible microstructures." Science Advances 6, no. 32 (2020): eaba9721. http://dx.doi.org/10.1126/sciadv.aba9721.
Pełny tekst źródłaZhou, Shengru, Chao Liang, Ziqi Mei, et al. "Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials." Micromachines 15, no. 2 (2024): 219. http://dx.doi.org/10.3390/mi15020219.
Pełny tekst źródłaSekiguchi, Ten, Hidetaka Ueno, Vivek Anand Menon, et al. "UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials." Sensors and Materials 35, no. 6 (2023): 1995. http://dx.doi.org/10.18494/sam4351.
Pełny tekst źródłaYang, Yicheng. "Overview of the Current State of Research on Metamaterials in Biomedicine." BIO Web of Conferences 142 (2024): 03020. https://doi.org/10.1051/bioconf/202414203020.
Pełny tekst źródłaLi, Nan, Chenhao Xue, Shenggui Chen, et al. "3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters." Polymers 15, no. 23 (2023): 4523. http://dx.doi.org/10.3390/polym15234523.
Pełny tekst źródłaDunne, Jai. "Chainmail inspired metamaterials for use in protective sports equipment." Graduate Journal of Sports Science, Coaching, Management, & Rehabilitation 1, no. 3 (2024): 36. http://dx.doi.org/10.19164/gjsscmr.v1i3.1509.
Pełny tekst źródłaBar-Sinai, Yohai, Gabriele Librandi, Katia Bertoldi, and Michael Moshe. "Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials." Proceedings of the National Academy of Sciences 117, no. 19 (2020): 10195–202. http://dx.doi.org/10.1073/pnas.1920237117.
Pełny tekst źródłaLuo, Sisi, Jianjiao Hao, Fuju Ye, et al. "Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces." Micromachines 12, no. 8 (2021): 988. http://dx.doi.org/10.3390/mi12080988.
Pełny tekst źródłaLi, Jian, Yi Yuan, Jiao Wang, Ronghao Bao, and Weiqiu Chen. "Propagation of nonlinear waves in graded flexible metamaterials." International Journal of Impact Engineering 156 (October 2021): 103924. http://dx.doi.org/10.1016/j.ijimpeng.2021.103924.
Pełny tekst źródłaFilipov, Evgueni T., Tomohiro Tachi, and Glaucio H. Paulino. "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials." Proceedings of the National Academy of Sciences 112, no. 40 (2015): 12321–26. http://dx.doi.org/10.1073/pnas.1509465112.
Pełny tekst źródłaChen, Xing, Li Cai, and Jihong Wen. "Extreme mechanical metamaterials with independently adjustable elastic modulus and mass density." Applied Physics Express 15, no. 4 (2022): 047001. http://dx.doi.org/10.35848/1882-0786/ac5872.
Pełny tekst źródłaSaoud, Ahmad, Diogo Queiros-Conde, Ahmad Omar, and Thomas Michelitsch. "Intelligent Anti-Seismic Foundation: The Role of Fractal Geometry." Buildings 13, no. 8 (2023): 1891. http://dx.doi.org/10.3390/buildings13081891.
Pełny tekst źródłaWang, Zhigang, Qi Wu, Yifei Lu, et al. "Design of a Distributedly Active Morphing Wing Based on Digital Metamaterials." Aerospace 9, no. 12 (2022): 762. http://dx.doi.org/10.3390/aerospace9120762.
Pełny tekst źródłaEffah, Elijah, Ezekiel Edward Nettey-Oppong, Ahmed Ali, Kyung Min Byun, and Seung Ho Choi. "Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates." Photonics 10, no. 2 (2023): 119. http://dx.doi.org/10.3390/photonics10020119.
Pełny tekst źródłaLi, Jian, Ronghao Bao, and Weiqiu Chen. "Exploring static responses, mode transitions, and feasible tunability of Kagome-based flexible mechanical metamaterials." Journal of the Mechanics and Physics of Solids 186 (May 2024): 105599. http://dx.doi.org/10.1016/j.jmps.2024.105599.
Pełny tekst źródłaZhuang, Shulei, Xinyu Li, Tong Yang, et al. "Graphene-Based Absorption–Transmission Multi-Functional Tunable THz Metamaterials." Micromachines 13, no. 8 (2022): 1239. http://dx.doi.org/10.3390/mi13081239.
Pełny tekst źródłaSong, Yihao, and Yanfeng Shen. "Highly morphing and reconfigurable fluid–solid interactive metamaterials for tunable ultrasonic guided wave control." Applied Physics Letters 121, no. 26 (2022): 264102. http://dx.doi.org/10.1063/5.0117634.
Pełny tekst źródłaFeng, Xiaobin, Ke Cao, Xiege Huang, Guodong Li, and Yang Lu. "Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance." Nanomaterials 12, no. 12 (2022): 2113. http://dx.doi.org/10.3390/nano12122113.
Pełny tekst źródłaKim, Jang Hwan, Su Eon Lee, and Bong Hoon Kim. "Applications of flexible and stretchable three-dimensional structures for soft electronics." Soft Science 3, no. 2 (2023): 16. http://dx.doi.org/10.20517/ss.2023.07.
Pełny tekst źródłaYu, Junmin, Can Nerse, Kyoung-jin Chang, and Semyung Wang. "A framework of flexible locally resonant metamaterials for attachment to curved structures." International Journal of Mechanical Sciences 204 (August 2021): 106533. http://dx.doi.org/10.1016/j.ijmecsci.2021.106533.
Pełny tekst źródłaHu, Zhou, Zhibo Wei, Kun Wang, et al. "Engineering zero modes in transformable mechanical metamaterials." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-36975-2.
Pełny tekst źródłaBertoldi, Katia, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. "Flexible mechanical metamaterials." Nature Reviews Materials 2, no. 11 (2017). http://dx.doi.org/10.1038/natrevmats.2017.66.
Pełny tekst źródłaLi, Lin, Feiyu Yang, Fufu Yang, Rongfu Lin, and Jun Zhang. "Fully foldable mechanical metamaterials with isotropic auxeticity and its generated multi-mode folding form." Journal of Mechanisms and Robotics, December 6, 2024, 1–27. https://doi.org/10.1115/1.4067345.
Pełny tekst źródłaYang, Haiying, Haibao Lu, Dong-Wei Shu, and Yong Qing (Richard) Fu. "Multimodal origami shape memory metamaterials undergoing compression-twist coupling." Smart Materials and Structures, June 8, 2023. http://dx.doi.org/10.1088/1361-665x/acdcd7.
Pełny tekst źródłaEl Helou, Charles, Philip R. Buskohl, Christopher E. Tabor, and Ryan L. Harne. "Digital logic gates in soft, conductive mechanical metamaterials." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-21920-y.
Pełny tekst źródłaHan, Donghai, Wenkang Li, Yushan Hou, et al. "Controllable Wrinkling Inspired Multifunctional Metamaterial for Near‐Field and Holographic Displays." Laser & Photonics Reviews, December 20, 2023. http://dx.doi.org/10.1002/lpor.202300879.
Pełny tekst źródłaSano, Tomohiko G., Emile Hohnadel, Toshiyuki Kawata, Thibaut Métivet, and Florence Bertails-Descoubes. "Randomly stacked open cylindrical shells as functional mechanical energy absorber." Communications Materials 4, no. 1 (2023). http://dx.doi.org/10.1038/s43246-023-00383-2.
Pełny tekst źródłaHan, Dong, Fan Yang, Yi Zhang, and Xin Ren. "A novel square-section auxetic lattice tubular metamaterial with favourable bending behaviour." Smart Materials and Structures, July 11, 2025. https://doi.org/10.1088/1361-665x/adeee5.
Pełny tekst źródła