Gotowa bibliografia na temat „Flexible porous MOF”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flexible porous MOF”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flexible porous MOF"
Zhang, Junxuan, Jie You, Qing Wei, Jeong-In Han i Zhiming Liu. "Hollow Porous CoO@Reduced Graphene Oxide Self-Supporting Flexible Membrane for High Performance Lithium-Ion Storage". Nanomaterials 13, nr 13 (30.06.2023): 1986. http://dx.doi.org/10.3390/nano13131986.
Pełny tekst źródłaSeth, Soana, Govardhan Savitha i Jarugu Narasimha Moorthy. "Diverse isostructural MOFs by postsynthetic metal node metathesis: anionic-to-cationic framework conversion, luminescence and separation of dyes". Journal of Materials Chemistry A 3, nr 45 (2015): 22915–22. http://dx.doi.org/10.1039/c5ta04551g.
Pełny tekst źródłaLing, Yajing, Jingjing Jiao, Mingxing Zhang, Huimin Liu, Dongjie Bai, Yunlong Feng i Yabing He. "A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption". CrystEngComm 18, nr 33 (2016): 6254–61. http://dx.doi.org/10.1039/c6ce00497k.
Pełny tekst źródłaMa, Qintian, Qingyuan Yang, Aziz Ghoufi, Ke Yang, Ming Lei, Gérard Férey, Chongli Zhong i Guillaume Maurin. "Guest-modulation of the mechanical properties of flexible porous metal–organic frameworks". J. Mater. Chem. A 2, nr 25 (2014): 9691–98. http://dx.doi.org/10.1039/c4ta00622d.
Pełny tekst źródłaHou, Chaoyi, Yue-Ling Bai, XiaoLi Bao, Liangzhen Xu, Rong-Guang Lin, Shourong Zhu, Jianhui Fang i Jiaqiang Xu. "A metal–organic framework constructed using a flexible tripodal ligand and tetranuclear copper cluster for sensing small molecules". Dalton Transactions 44, nr 17 (2015): 7770–73. http://dx.doi.org/10.1039/c5dt00762c.
Pełny tekst źródłaHaldar, Ritesh, i Christof Wöll. "Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures". Nano Research 14, nr 2 (20.07.2020): 355–68. http://dx.doi.org/10.1007/s12274-020-2953-z.
Pełny tekst źródłaLi, Zhen, Jingting Bu, Chenying Zhang, Lingli Cheng, Dengyu Pan, Zhiwen Chen i Minghong Wu. "Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors". New Journal of Chemistry 45, nr 24 (2021): 10672–82. http://dx.doi.org/10.1039/d1nj01369f.
Pełny tekst źródłaDeng, Mingli, Shijun Tai, Weiquan Zhang, Yongchen Wang, Jiaxing Zhu, Jinsheng Zhang, Yun Ling i Yaming Zhou. "A self-catenated rob-type porous coordination polymer constructed from triazolate and carboxylate ligands: fluorescence response to the reversible phase transformation". CrystEngComm 17, nr 31 (2015): 6023–29. http://dx.doi.org/10.1039/c5ce00887e.
Pełny tekst źródłaLi, Zhen, Julio Fraile, Clara Viñas, Francesc Teixidor i José G. Planas. "Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material". Chemical Communications 57, nr 20 (2021): 2523–26. http://dx.doi.org/10.1039/d0cc07393h.
Pełny tekst źródłaCao, Xiao-Man, Zhi-Jia Sun, Si-Yu Zhao, Bing Wang i Zheng-Bo Han. "MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors". Materials Chemistry Frontiers 2, nr 9 (2018): 1692–99. http://dx.doi.org/10.1039/c8qm00284c.
Pełny tekst źródłaRozprawy doktorskie na temat "Flexible porous MOF"
PEREGO, JACOPO. "Functional Porous Materials: Tailored Adsorption Properties, Flexibility and Advanced Optical Applications". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263593.
Pełny tekst źródłaThe research activity focused on the design, synthesis and characterization of porous organic and hybrid materials. Porous materials for selective gas adsorption and storage. Tailored porous organic frameworks bearing different functional groups have been investigated via gas adsorption analyses and in situ spectroscopic techniques to understand the interaction between the guest phase and the primary adsorption sites installed on pore walls. Specifically, aliphatic amines interact strongly with carbon dioxide molecules resulting in an isosteric heat of adsorption as high as 54 kJ/mol at low loading and this close-contact interaction has been characterized with 2D heterocorrelated NMR sppectroscopy. Hyper.crosslinked polymers and porous organic frameworks have been synthetized and their performance towards high pressure (up to 180 bar) methane adsorption have been evaluated to assess their potential applications in adsorbed natural gas technology (ANG). During a period at Bernal institute (Limerick, Ireland) under the supervision of Prof. M. J. Zaworotko, I developed novel switching metal-organic frameworks that display guest-induced phase transitions between close phases and a porous open phase. During the close to open phase transitions the coordination sphere of the zinc cations inside the structures changes from a square pyramidal to a tetrahedral geometry. Moreover, the threshold pressure for gas adsorption can be manipulated through a mixed-linker approach. These materials are currently investigated for applications in gas storage and separation. Metal-organic frameworks with intrinsic dynamics. Metal organic frameworks built up with rigid aliphatic linkers have been developed and their adsorptive and thermal properties fully characterized. These materials display ultra-fast rotational dynamic even at very low temperature. An in-depth solid state NMR study has been conducted to understand the fast rotation of the organic strut and the influence of guest species hosted inside the pores on its dynamic. Organic and hybrid materials for photonic applications. Emitting porous aromatic frameworks (ePAFs) nanoparticles containing highly fluorescent diphenylanthracene moieties have been developed. This materials display high photoluminescence quantum yield and a fast exciton diffusion inside the amorphous framework. When these nanoparticles are suspended in a solution of a suitable sensitizer the mixture display highly efficient sensitized triplet-triplet annihilation up-conversion with quantum yield up to 15 %. Moreover, PAFs with integrated sensitizers (i-ePAFs) display sensitized up-conversion working as an autonomous nanodevice. Metal-organic frameworks with diphenylanthracene units and zirconium oxo-hydroxo clusters have been developed and their luminescence and radioluminescence have been characterized. These nanocrystals have been embedded in polymeric matrixes to generate efficient and innovative scintillating materials with fast response for x-ray and gamma-ray detection.
Grünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller i Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138599.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Grünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller i Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology". Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27762.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Hoffmann, Herbert C. "NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs)". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149597.
Pełny tekst źródłaMinhas, Rizwan. "Spin Crossover (SCO) Hofmann clathrate with switchable property, for the design of a new gas storage/separation material". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3049.
Pełny tekst źródłaMetal Organic Frameworks (MOFs) have been identified in recent years as advanced alternatives for gas storage, molecular separations, sensing or catalysis, thanks to their remarkable host-guest properties and versatility. More recently, the combination of the ferrous spin-crossover (SCO) with MOFs has made it possible to obtain switchable porous architectures where the electron spin of the iron(II) metal centers can be controlled by different stimuli. This work focuses on one of these SCO MOFs, also called Hofmann clathrates, (FeNi[CN]4.Pyrazine) with a switchable property that is studied here for its gas storage and separation properties.This material is first synthesized using an environmentally friendly mixing of reagents, employing iron and nickel salts with pyrazine as the organic linker. The resulting microcrystalline powder is then characterized via different experimental techniques including nitrogen and argon porosimetry, thermogravimetry analysis (TGA), X-ray diffraction, scanning electron microscopy (SEM), and IR spectroscopy, thus confirming the successful synthesis of this material.One of the aims of this research was to design and construct a novel homemade volumetric setup to study the high-pressure adsorption of pure gases and mixtures allowing to simultaneously visualize the sample by means of a camera attached near the sapphire window of the measuring cell. First, high pressure (up to 7 MPa) pure gases (CO2, CH4 & N2) adsorption in (FeNi[CN]4.Pz) were conducted at various temperatures and results have shown an interesting structural flexibility of this MOF during CO2 adsorption, whatever the initial spin state of the material. These structural transitions upon CO2 adsorption were then observed using in-situ vibrational spectroscopy techniques: FTIR and Raman spectroscopy. Moreover, it was shown that the SCO property of this material is well associated with the changes in color of the sample itself showing that the combined adsorption/image analysis technique is a useful tool to investigate the SCO change due to adsorption for this type of material.The adsorption measurement of gas mixtures could be achieved by utilizing the same homemade manometric setup coupled with an IR gas analyzer. Experimental data demonstrated that (FeNi[CN]4.Pz) has a preferential adsorption for CO2 over CH4, making it a suitable candidate for CO2/CH4 separation in some conditions. It was shown that this preferential adsorption of CO2 is enhanced by the structural flexibility of the material.In addition to these experimental results, modeling of both equilibrium adsorption, kinetics of adsorption and selectivity was performed and compared to the measured properties.In summary, this thesis presents a comprehensive study of (FeNi[CN]4.Pz), highlighting its synthesis, characterization, structural flexibility, and exceptional performance in CO2/CH4 as well as CO2/N2 separations, highlighted by both experimental and theoretical approaches
Khuong, Trung Thuy. "Etude des propriétés d'adsorption d'hydrocarbures de composés organométalliques poreux flexibles". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20021/document.
Pełny tekst źródłaThis study describes a study of the adsorptive properties of several flexible porous organometallic frameworks (MOFs) using the volumetric and gravimetric methods and apolar normal alkanes (n-pentane to n-nonane) as adsorbate molecules. The materials studied are MIL-47(V), MIL-53(Cr, Al, Fe), the modified MIL-53(Fe)-X and the MIL-88(Fe)-A, B, C.This allows the study of different parameters on the behaviour of the solids during the adsorption process. Amongst the findings of this study, several can be emphasized :(i) the flexibility of the MIL-53(Cr, Al, Fe), made possible by the presence of µ2-OH coordinated to the metal centres, depends on the identity of the metal centres and that of the adsorbate.(ii) the chemical modification by the substitution of a hydrogen atom on the aromatic ligands of the MIL-53(Fe) induces a change in the degree of flexibility of the framework and the stability of the various phases.(iii) the nature of the ligands in the MIL-88(Fe) series, in terms of the number of the aromatic rings comprising the linker, changes the physical interactions within the framework and thus its stability and flexibility.(iv) the ease of diffusion into the pores of the alkanes of various alkyl chain length depends on the three points mentioned above
Yang, Ke. "Etude de la dynamique des matériaux poreux hybrides de type MOFs sous l'effet de la pression mécanique". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20092.
Pełny tekst źródłaMetal Organic Framework (MOF) materials have been the focus of intense research activities over the past 10 years, with the emergence of a wide range of novel architectures, constructed from inorganic clusters linked by organic moieties. In order to maintain their useful functionalities and high performances in the different fields explored so far (gas storage/separation, catalysis, sensors and many others), besides high chemical and thermal stabilities, MOFs must be also stable enough to resist to different mechanical constraints in both processing and applications. Indeed, there is nowadays a growing interest to characterize the mechanical behaviours of this class of materials under moderate and high applied pressure. This work first aimed to probe the pressure dependence of the structural behaviour of the highly flexible MIL-53 system [MIL stands for Materials of Institut Lavoisier] as a function of the nature of (i) the metal center (Al,Cr) and (ii) the functional group grafted on the organic linker (-H,-Cl,-CH3) using a combination of high-pressure x-ray/neutron diffraction and molecular simulations. The same methodology was further applied to probe how the presence of guest molecules affects the structural transition of this class of hybrid porous solids. Finally, the mechanical stability and the compressibility of two families of rigid MOFs, the MIL-125(Ti) and the UiO-66(Zr) [UiO stands for University of Oslo] up to high pressure (P~5 GPa) have been investigated and their properties in terms of bulk modulus were compared with the most resilient MOFs reported so far
Li, Chia-Yu, i 李佳諭. "Preparation of inkjet printed flexible MOF-derived porous ZnO/CuO gas sensor with low operating temperature". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/kbe2mh.
Pełny tekst źródła國立高雄應用科技大學
化學工程與材料工程系博碩士班
106
In this study, inkjet printing technology was used to prepare a looped electrode composed of silver nanoparticles on a flexible polyimide (PI) film, and a porous semiconductor-type gas-sensing material such as zinc oxide and copper oxide, which were derived from a metal-organic framework material was used as sensing layer, and coated onto nanosilver loop type electrode. To investigate the sensing capability of the homemade gas sensor under reducing gas atmosphere at room temperature with a low wattage UV-LED (10 W) lamp irradiated, to improve the semiconductor gas sensitive materials need to be applied to the limitations of high-temperature environment. Using ethylene glycol as a reducing agent and polyvinylpyrrolidone (PPV) as a protective agent, silver nitrate (AgNO3) was reduced by a simple polyol reduction method to prepare nanosilver particles. X-ray diffraction (XRD) results indicate that the silver nanoparticles are spherical metal silver with face-centered cubic structure. The particle size is approximately 60-80 nm by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) and particle size analyzer. The silver nanoparticle was formulated into 5 wt% silver ink, and the ink was filled in a commercially available EPSON T50 printer ink cartridge. The nanosilver loop type electrode is printed on the polyimide film and then coated with a layer of gas sensitive material, wherein the sensing layer is ZnO (N-type) and CuO (P-type), and the formation of heterogeneous interface (P-N Junction) of ZnO mixed with CuO (ZnO/CuO) to complete the preparation of sensors. The sensors are placed in a homemade gas sensing chamber, and the sensing test is carried out under reducing gas atmosphere (0-400 ppm) at room temperature with a low wattage UV-LED (10 W) lamp irradiated. The sensors was connected to a universal meter (Keithley 2400), and the current value was read at different reducing gas concentrations. After the computer software was recorded, the sensing performance of the gas sensor at room temperature was investigated. When the sensor was used to sense 50 ppm acetone at room temperature, the response values of ZnO, CuO, and ZnO/CuO were 34.9, 20.9 and 63.6 respectively. The response time (Tres) was 3, 52 and 5 seconds respectively, the recovery time (Trec) was 5, 14 and 8 seconds, respectively, and the sensed instantaneous current value significantly changed with increasing acetone gas concentration, and was an effective acetone gas sensor. It is worth noting that sensors with heterostructure materials (ZnO/CuO) have obviously synergistic effects. Which show that the sensors can effectively improve the limitations of conventional metal oxide semiconductor gas sensors operating at high operating temperature, and have good sensing ability for the acetone gas with low ppm concentration at room temperature.
Części książek na temat "Flexible porous MOF"
Coombes, D. S., R. G. Bell, C. Mellot-Draznieks, N. A. Ramsahye i G. Maurin. "Derivation of new interatomic potential for flexible metal-organic frameworks: a pre-requisite for understanding swelling under adsorption conditions." W From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference, 918–25. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80940-2.
Pełny tekst źródłaAbdul Azeez, Nazeer, Sapna Pahil, Surendra H. Mahadevegowda i Sudarshana Deepa Vijaykumar. "Metal-Organic Frameworks (MOFs) for the Antimicrobial Applications". W Recent Trends and The Future of Antimicrobial Agents - Part 2, 124–41. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123975123010009.
Pełny tekst źródłaK N, Lavanya, i Madavi Sunitha. "RECENT ADVANCES OF METAL-ORGANIC FRAMEWORKS IN PEROVSKITE SOLAR CELL". W Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 20, 243–49. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3becs20p2ch8.
Pełny tekst źródłaStreszczenia konferencji na temat "Flexible porous MOF"
Sakthivel, Somansundar, Panneer Selvam Rajamanickam i Nagan Srinivasan. "Hydrodynamic Behavior of Truss Pontoon Mobile Offshore Base Platform". W ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54627.
Pełny tekst źródła