Artykuły w czasopismach na temat „Fluid dynamics – Computer simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluid dynamics – Computer simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Lei, Carlos F. Lange, and Yongsheng Ma. "Association of design and computational fluid dynamics simulation intent in flow control product optimization." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 13 (March 14, 2017): 2309–22. http://dx.doi.org/10.1177/0954405417697352.
Pełny tekst źródłaS. Hussein, Suhad. "A Computer Simulation Study of High Pressure Processing of Liquid Food Using Computational Fluid Dynamics." International Journal of Modeling and Optimization 5, no. 1 (February 2015): 78–81. http://dx.doi.org/10.7763/ijmo.2015.v5.440.
Pełny tekst źródłaWu, Enhua, Hongbin Zhu, Xuehui Liu, and Youquan Liu. "Simulation and interaction of fluid dynamics." Visual Computer 23, no. 5 (March 27, 2007): 299–308. http://dx.doi.org/10.1007/s00371-007-0106-y.
Pełny tekst źródłaDrikakis, Dimitris, Michael Frank, and Gavin Tabor. "Multiscale Computational Fluid Dynamics." Energies 12, no. 17 (August 25, 2019): 3272. http://dx.doi.org/10.3390/en12173272.
Pełny tekst źródłaSchlijper, A. G., C. W. Manke, W. G. Madden, and Y. Kong. "Computer Simulation of Non-Newtonian Fluid Rheology." International Journal of Modern Physics C 08, no. 04 (August 1997): 919–29. http://dx.doi.org/10.1142/s0129183197000795.
Pełny tekst źródłaKraváriková, Helena. "Computer Modeling Application of Fluid Outflow from Vessels." Materials Science Forum 952 (April 2019): 250–57. http://dx.doi.org/10.4028/www.scientific.net/msf.952.250.
Pełny tekst źródłaAGISHTEIN, M. E., and A. A. MIGDAL. "COMPUTER SIMULATION OF THREE-DIMENSIONAL VORTEX DYNAMICS." Modern Physics Letters A 01, no. 03 (June 1986): 221–30. http://dx.doi.org/10.1142/s0217732386000312.
Pełny tekst źródłaZhu, Likuan, Boyan Song, and Zhen Long Wang. "Computational Fluid Dynamics Analysis on Rupture of Gas Bubble." Applied Mechanics and Materials 339 (July 2013): 468–73. http://dx.doi.org/10.4028/www.scientific.net/amm.339.468.
Pełny tekst źródłaLeoveanu, Ioan Sorin, Kamila Kotrasova, and Eva Kormaníková. "Using of Computer Fluid Dynamics in Simulation of the Waste Reserviors Processes." Advanced Materials Research 969 (June 2014): 351–54. http://dx.doi.org/10.4028/www.scientific.net/amr.969.351.
Pełny tekst źródłaUmbarkar, Tejas S., and Clement Kleinstreuer. "Computationally Efficient Fluid-Particle Dynamics Simulations of Arterial Systems." Communications in Computational Physics 17, no. 2 (January 23, 2015): 401–23. http://dx.doi.org/10.4208/cicp.160114.120914a.
Pełny tekst źródłaSandrakov, G. V. "COMPUTATIONAL ALGORITHMS FOR MULTIPHASE HYDRODYNAMICS MODELS AND FILTRATION." Journal of Numerical and Applied Mathematics, no. 1 (2022): 46–61. http://dx.doi.org/10.17721/2706-9699.2022.1.04.
Pełny tekst źródłaWang, Xiaokun, Yanrui Xu, Xiaojuan Ban, Sinuo Liu, and Yuting Xu. "A Unified Multiple-Phase Fluids Framework Using Asymmetric Surface Extraction and the Modified Density Model." Symmetry 11, no. 6 (June 2, 2019): 745. http://dx.doi.org/10.3390/sym11060745.
Pełny tekst źródłaNagaso, Masaru, Joseph Moysan, Christian Lhuillier, and Jean-Philippe Jeannot. "Simulation of Fluid Dynamics Monitoring Using Ultrasonic Measurements." Applied Sciences 11, no. 15 (July 30, 2021): 7065. http://dx.doi.org/10.3390/app11157065.
Pełny tekst źródłaMannan, Mohammed Abdul, and Dr Md Fakhruddin H. N. "Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulation." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (July 31, 2022): 688–93. http://dx.doi.org/10.22214/ijraset.2022.45280.
Pełny tekst źródłaAnderson, Richard L., H. Christopher Greenwel, James L. Suter, Rebecca M. Jarvis, and Peter V. Coveney. "Towards the design of new and improved drilling fluid additives using molecular dynamics simulations." Anais da Academia Brasileira de Ciências 82, no. 1 (March 2010): 43–60. http://dx.doi.org/10.1590/s0001-37652010000100005.
Pełny tekst źródłaWu, S. Z., D. N. Wormley, D. Rowell, and H. M. Paynter. "Dynamic Modeling and Simulation of Gaseous Systems." Journal of Dynamic Systems, Measurement, and Control 107, no. 4 (December 1, 1985): 262–66. http://dx.doi.org/10.1115/1.3140733.
Pełny tekst źródłaHeryana, Yayan Heryana. "Analysis of Orifice in Biodiesel Reactor with Hydrodynamic Cavitation System using Computational Fluid Dynamics." Jurnal Keteknikan Pertanian 10, no. 1 (May 18, 2022): 85–94. http://dx.doi.org/10.19028/jtep.010.1.85-94.
Pełny tekst źródłaYao, Yao, Yu Bai, and Ming Liu. "Fluid Dynamics Analysis and Research of Electrostatic Oiler Knife Beam." Applied Mechanics and Materials 318 (May 2013): 140–43. http://dx.doi.org/10.4028/www.scientific.net/amm.318.140.
Pełny tekst źródłaHuang, Hanyao, Xu Cheng, Yang Wang, Dantong Huang, Yuhao Wei, Heng Yin, Bing Shi, and Jingtao Li. "Analysis of Velopharyngeal Functions Using Computational Fluid Dynamics Simulations." Annals of Otology, Rhinology & Laryngology 128, no. 8 (April 8, 2019): 742–48. http://dx.doi.org/10.1177/0003489419842217.
Pełny tekst źródłaRaczkowski, Andrzej, Zbigniew Suchorab, and Przemysław Brzyski. "Computational fluid dynamics simulation of thermal comfort in naturally ventilated room." MATEC Web of Conferences 252 (2019): 04007. http://dx.doi.org/10.1051/matecconf/201925204007.
Pełny tekst źródłaJanczarek, Marcin, and Ewa Kowalska. "Computer Simulations of Photocatalytic Reactors." Catalysts 11, no. 2 (February 3, 2021): 198. http://dx.doi.org/10.3390/catal11020198.
Pełny tekst źródłaYamagata, Kanako, Keiji Shinozuka, Shouhei Ogisawa, Akio Himejima, Hiroaki Azaki, Shuichi Nishikubo, Takako Sato, Masaaki Suzuki, Tadashi Tanuma, and Morio Tonogi. "A preoperative predictive study of advantages of airway changes after maxillomandibular advancement surgery using computational fluid dynamics analysis." PLOS ONE 16, no. 8 (August 11, 2021): e0255973. http://dx.doi.org/10.1371/journal.pone.0255973.
Pełny tekst źródłaBerger, Manuel, Aris I. Giotakis, Martin Pillei, Andreas Mehrle, Michael Kraxner, Florian Kral, Wolfgang Recheis, Herbert Riechelmann, and Wolfgang Freysinger. "Agreement between rhinomanometry and computed tomography-based computational fluid dynamics." International Journal of Computer Assisted Radiology and Surgery 16, no. 4 (March 7, 2021): 629–38. http://dx.doi.org/10.1007/s11548-021-02332-1.
Pełny tekst źródłaWretborn, Joel, Sean Flynn, and Alexey Stomakhin. "Guided bubbles and wet foam for realistic whitewater simulation." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–16. http://dx.doi.org/10.1145/3528223.3530059.
Pełny tekst źródłaShao, Xuqiang, Erchong Liao, and Fengquan Zhang. "Improving SPH Fluid Simulation Using Position Based Dynamics." IEEE Access 5 (2017): 13901–8. http://dx.doi.org/10.1109/access.2017.2729601.
Pełny tekst źródłaShinto, Hiroyuki. "Computer Simulation of Wetting and Capillary Forces —Molecular Modeling and Fluid Dynamics—." Journal of the Society of Powder Technology, Japan 46, no. 1 (January 10, 2009): 25–34. http://dx.doi.org/10.4164/sptj.46.25.
Pełny tekst źródłaKinjo, T., K. Ohguchi, K. Yasuoka, and M. Matsumoto. "Computer simulation of fluid phase change: vapor nucleation and bubble formation dynamics." Computational Materials Science 14, no. 1-4 (February 1999): 138–41. http://dx.doi.org/10.1016/s0927-0256(98)00088-3.
Pełny tekst źródłaAraújo, Bruna Sene Alves, and Kássia Graciele dos Santos. "CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates." Materials Science Forum 899 (July 2017): 89–94. http://dx.doi.org/10.4028/www.scientific.net/msf.899.89.
Pełny tekst źródłaYu, Zhenning, and Seng Fat Wong. "The application of computational fluid dynamics simulation technique to ocean boat anti-disturbance tracking controller." International Journal of Advanced Robotic Systems 16, no. 3 (May 1, 2019): 172988141984204. http://dx.doi.org/10.1177/1729881419842045.
Pełny tekst źródłaDixon, Anthony G., and Behnam Partopour. "Computational Fluid Dynamics for Fixed Bed Reactor Design." Annual Review of Chemical and Biomolecular Engineering 11, no. 1 (June 7, 2020): 109–30. http://dx.doi.org/10.1146/annurev-chembioeng-092319-075328.
Pełny tekst źródłaFilipovic, Nenad, and Milos Kojic. "Computer simulations of blood flow with mass transport through the carotid artery bifurcation." Theoretical and Applied Mechanics 31, no. 1 (2004): 1–33. http://dx.doi.org/10.2298/tam0401001f.
Pełny tekst źródłaŠulc, Stanislav, Vít Šmilauer, and František Wald. "COUPLED SIMULATION FOR FIRE-EXPOSED STRUCTURES USING CFD AND THERMO-MECHANICAL MODELS." Acta Polytechnica CTU Proceedings 13 (November 13, 2017): 121. http://dx.doi.org/10.14311/app.2017.13.0121.
Pełny tekst źródłaSkipper, N. T. "Computer simulation of aqueous pore fluids in 2:1 clay minerals." Mineralogical Magazine 62, no. 5 (October 1998): 657–67. http://dx.doi.org/10.1180/002646198548043.
Pełny tekst źródłaMOEENDARBARY, E., T. Y. NG, and M. ZANGENEH. "DISSIPATIVE PARTICLE DYNAMICS IN SOFT MATTER AND POLYMERIC APPLICATIONS — A REVIEW." International Journal of Applied Mechanics 02, no. 01 (March 2010): 161–90. http://dx.doi.org/10.1142/s1758825110000469.
Pełny tekst źródłaMarturano, Fabio, Luca Martellucci, Andrea Chierici, Andrea Malizia, Daniele Di Giovanni, Francesco d’Errico, Pasquale Gaudio, and Jean-Franҫois Ciparisse. "Numerical Fluid Dynamics Simulation for Drones’ Chemical Detection." Drones 5, no. 3 (July 29, 2021): 69. http://dx.doi.org/10.3390/drones5030069.
Pełny tekst źródłaBARTOLONI, A., C. BATTISTA, S. CABASINO, P. S. PAOLUCCI, J. PECH, R. SARNO, G. M. TODESCO, et al. "LBE SIMULATIONS OF RAYLEIGH-BÉNARD CONVECTION ON THE APE100 PARALLEL PROCESSOR." International Journal of Modern Physics C 04, no. 05 (October 1993): 993–1006. http://dx.doi.org/10.1142/s012918319300077x.
Pełny tekst źródłaSun, Jin, Francine Battaglia, and Shankar Subramaniam. "Hybrid Two-Fluid DEM Simulation of Gas-Solid Fluidized Beds." Journal of Fluids Engineering 129, no. 11 (June 9, 2007): 1394–403. http://dx.doi.org/10.1115/1.2786530.
Pełny tekst źródłaCarvalho, A. J. G., D. C. Galindo, M. S. C. Tenório, and J. L. G. Marinho. "MODELING AND SIMULATION OF A HORIZONTAL THREE-PHASE SEPARATOR: INFLUENCE OF PHYSICOCHEMICAL PROPERTIES OF OIL." Brazilian Journal of Petroleum and Gas 14, no. 04 (January 7, 2021): 205–20. http://dx.doi.org/10.5419/bjpg2020-0016.
Pełny tekst źródłaZou, Ling. "Simulating Liquid Dynamics by a Particle-Based Method." Applied Mechanics and Materials 380-384 (August 2013): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1121.
Pełny tekst źródłaBai, Ming Hua, Qing Rong Liu, and Hong Liang Zhou. "Design of Magnetic Fluid Sealing Device and Computer Simulation in Sintering Machine." Advanced Materials Research 328-330 (September 2011): 2270–73. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.2270.
Pełny tekst źródłaWagner, Martin, and Marisol Ripoll. "Solvent-induced depletion interactions in multiparticle collision dynamic simulations." International Journal of Modern Physics C 30, no. 10 (October 2019): 1941008. http://dx.doi.org/10.1142/s0129183119410080.
Pełny tekst źródłaSARMENTO, C. V. S., A. O. C. FONTE, L. J. PEDROSO, and P. M. V. RIBEIRO. "From numerical prototypes to real models: a progressive study of aerodynamic parameters of nonconventional concrete structures with Computational Fluid Dynamics." Revista IBRACON de Estruturas e Materiais 13, no. 3 (June 2020): 628–43. http://dx.doi.org/10.1590/s1983-41952020000300012.
Pełny tekst źródłaRometsch, Thomas. "Detecting vortices in fluid dynamics simulations using computer vision." Proceedings of the International Astronomical Union 16, S362 (June 2020): 398–403. http://dx.doi.org/10.1017/s1743921322001454.
Pełny tekst źródłaDominguez, Hector, Orest Pizio, Laszlo Pusztai, and Stefan Sokolowski. "The Structural Properties and Diffusion of a Three-Dimensional Isotropic Core-Softened Model Fluid in Disordered Porous Media. Molecular Dynamics Simulation." Adsorption Science & Technology 25, no. 7 (September 2007): 479–91. http://dx.doi.org/10.1260/0263-6174.25.7.479.
Pełny tekst źródłaSantos, D. A., I. Petri Junior, Marcos A. S. Barrozo, and Claudio Roberto Duarte. "Mixture of Particles' Influence in Computer Simulations of a Spouted Bed." Materials Science Forum 660-661 (October 2010): 448–53. http://dx.doi.org/10.4028/www.scientific.net/msf.660-661.448.
Pełny tekst źródłaColonna, Piero, and Paolo Silva. "Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations." Journal of Fluids Engineering 125, no. 3 (May 1, 2003): 414–27. http://dx.doi.org/10.1115/1.1567306.
Pełny tekst źródłaEspinosa, Jorge R., Pablo Sampedro, Chantal Valeriani, Carlos Vega, and Eduardo Sanz. "Lattice mold technique for the calculation of crystal nucleation rates." Faraday Discussions 195 (2016): 569–82. http://dx.doi.org/10.1039/c6fd00141f.
Pełny tekst źródłaKovalev, I. S. "MATHEMATICAL AND COMPUTER SIMULATION OF THE COMMERTIAL VEHICLE’S HYDRAULIC RETARDER." Vestnik SibADI 15, no. 3 (July 11, 2018): 400–411. http://dx.doi.org/10.26518/2071-7296-2018-3-400-411.
Pełny tekst źródłaFan, Zhe, Yu-Chuan Kuo, Ye Zhao, Feng Qiu, Arie Kaufman, and William Arcieri. "Visual simulation of thermal fluid dynamics in a pressurized water reactor." Visual Computer 25, no. 11 (January 23, 2009): 985–96. http://dx.doi.org/10.1007/s00371-008-0309-x.
Pełny tekst źródłaSong, Yuan, and Insu Paek. "Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model." Energies 13, no. 24 (December 14, 2020): 6604. http://dx.doi.org/10.3390/en13246604.
Pełny tekst źródła