Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Fluid Dynamics.

Artykuły w czasopismach na temat „Fluid Dynamics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluid Dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yamagami, Shigemasa, Tetta Hashimoto, and Koichi Inoue. "OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tushar Shimpi, Palash. "Palash's Law of Fluid Dynamics." International Journal of Science and Research (IJSR) 12, no. 9 (2023): 1097–103. http://dx.doi.org/10.21275/sr23910212852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Khare, Prashant. "Fluid Dynamics: Part 1: Classical Fluid Dynamics." Contemporary Physics 56, no. 3 (2015): 385–87. http://dx.doi.org/10.1080/00107514.2015.1048303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Raza, Md Shamim, Nitesh Kumar, and Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics." Journal of Advances in Mechanical Engineering and Science 1, no. 1 (2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Harlander, Uwe, Andreas Hense, Andreas Will, and Michael Kurgansky. "New aspects of geophysical fluid dynamics." Meteorologische Zeitschrift 15, no. 4 (2006): 387–88. http://dx.doi.org/10.1127/0941-2948/2006/0144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sreenivasan, Katepalli R. "Chandrasekhar's Fluid Dynamics." Annual Review of Fluid Mechanics 51, no. 1 (2019): 1–24. http://dx.doi.org/10.1146/annurev-fluid-010518-040537.

Pełny tekst źródła
Streszczenie:
Subrahmanyan Chandrasekhar (1910–1995) is justly famous for his lasting contributions to topics such as white dwarfs and black holes (which led to his Nobel Prize), stellar structure and dynamics, general relativity, and other facets of astrophysics. He also devoted some dozen or so of his prime years to fluid dynamics, especially stability and turbulence, and made important contributions. Yet in most assessments of his science, far less attention is paid to his fluid dynamics work because it is dwarfed by other, more prominent work. Even within the fluid dynamics community, his extensive rese
Style APA, Harvard, Vancouver, ISO itp.
7

Ushida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa, and Takatsune Narumi. "OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kim, Youngho, and Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wood, Heather. "Fluid dynamics." Nature Reviews Neuroscience 6, no. 2 (2005): 92. http://dx.doi.org/10.1038/nrn1613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tran, Cindy. "Fluid Dynamics." Prairie Schooner 97, no. 4 (2023): 17–19. http://dx.doi.org/10.1353/psg.2023.a939791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

REISCH, MARC S. "FLUID DYNAMICS." Chemical & Engineering News 83, no. 8 (2005): 16–18. http://dx.doi.org/10.1021/cen-v083n008.p016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Lin, C. T., J. K. Kuo, and T. H. Yen. "Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics." Journal of Computational and Theoretical Nanoscience 6, no. 5 (2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Nagura, Ryo, Kanji Kawashima, Kentaro Doi, and Satoyuki Kawano. "OS23-3 Observation of Electrically Induced Flows in Highly Polarized Electrolyte Solution(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 280. http://dx.doi.org/10.1299/jsmeatem.2015.14.280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Guardone, Alberto, Piero Colonna, Matteo Pini, and Andrea Spinelli. "Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids." Annual Review of Fluid Mechanics 56, no. 1 (2024): 241–69. http://dx.doi.org/10.1146/annurev-fluid-120720-033342.

Pełny tekst źródła
Streszczenie:
The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of no
Style APA, Harvard, Vancouver, ISO itp.
15

YANAGISAWA, Shota, Masaru OGASAWARA, Takahiro ITO, et al. "OS23-11 The Mechanism of Enhancing Pool Boiling Efficiency by Changing Surface Property(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 288. http://dx.doi.org/10.1299/jsmeatem.2015.14.288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Thabet, Senan, and Thabit H. Thabit. "Computational Fluid Dynamics: Science of the Future." International Journal of Research and Engineering 5, no. 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Yamaguchi, Yukio, and Kenji Amagai. "OS23-7 Development of Binary Refrigeration System Using CO2 Coolant for Freezing Show Case(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 284. http://dx.doi.org/10.1299/jsmeatem.2015.14.284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Wu, Xiang, and Ling Feng Tang. "Review of Coupled Research for Mechanical Dynamics and Fluid Mechanics of Reciprocating Compressor." Applied Mechanics and Materials 327 (June 2013): 227–32. http://dx.doi.org/10.4028/www.scientific.net/amm.327.227.

Pełny tekst źródła
Streszczenie:
Research statuses of mechanical dynamics and fluid mechanics of a reciprocating compressor are reviewed respectively ,along with the presentation of coupled research for these two disciplines of a reciprocating compressor. Analyses for mechanical dynamics are focused on modal analysis and dynamic response analysis. Three methods can be adopted in dynamic response analysis,which are the combination of the formula derivation and finite element method, the combination of multi-rigid-body dynamics and finite element method , and thecombination of multi-flexible body dynamics and finite element met
Style APA, Harvard, Vancouver, ISO itp.
19

Zhang, Xinjie, Ruochen Wu, Konghui Guo, Piyong Zu, and Mehdi Ahmadian. "Dynamic characteristics of magnetorheological fluid squeeze flow considering wall slip and inertia." Journal of Intelligent Material Systems and Structures 31, no. 2 (2019): 229–42. http://dx.doi.org/10.1177/1045389x19888781.

Pełny tekst źródła
Streszczenie:
Magnetorheological fluid has been investigated intensively nowadays, and magnetorheological fluid shows large force capabilities in squeeze mode with wide application potential such as control valve, engine mounts, and impact dampers. In these applications, magnetorheological fluid is flowing in a dynamic environment due to the transient nature of inputs and system characteristics. Hence, this article undertakes a comprehensive study of magnetorheological fluid squeeze flow dynamics behaviors with wall slip, yield, and inertia. First, the dynamic model with the bi-viscous constitutive of magne
Style APA, Harvard, Vancouver, ISO itp.
20

KAWAMURA, Tetuya, and Hideo TAKAMI. "Computational Fluid Dynamics." Tetsu-to-Hagane 75, no. 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Gilbert, W. M. "Amniotic Fluid Dynamics." NeoReviews 7, no. 6 (2006): e292-e299. http://dx.doi.org/10.1542/neo.7-6-e292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 10, no. 1 (2013): 521–77. http://dx.doi.org/10.4171/owr/2013/10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 14, no. 2 (2018): 1421–62. http://dx.doi.org/10.4171/owr/2017/23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hjertager, Bjørn. "Engineering Fluid Dynamics." Energies 10, no. 10 (2017): 1467. http://dx.doi.org/10.3390/en10101467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Morishita, Etsuo. "Spreadsheet Fluid Dynamics." Journal of Aircraft 36, no. 4 (1999): 720–23. http://dx.doi.org/10.2514/2.2497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Jones, AM, MJ Moseley, SJ Halfmann, et al. "Fluid volume dynamics." Critical Care Nurse 11, no. 4 (1991): 74–76. http://dx.doi.org/10.4037/ccn1991.11.4.74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Czosnyka, Marek, Zofia Czosnyka, Shahan Momjian, and John D. Pickard. "Cerebrospinal fluid dynamics." Physiological Measurement 25, no. 5 (2004): R51—R76. http://dx.doi.org/10.1088/0967-3334/25/5/r01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Hibberd, S., and Bhinsen K. Shivamoggi. "Theoretical Fluid Dynamics." Mathematical Gazette 70, no. 454 (1986): 329. http://dx.doi.org/10.2307/3616227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

MIZOTA, Taketo. "Sports Fluid Dynamics." Wind Engineers, JAWE 2001, no. 87 (2001): 37–41. http://dx.doi.org/10.5359/jawe.2001.87_37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Acheson, D. J. "Elementary Fluid Dynamics." Journal of the Acoustical Society of America 89, no. 6 (1991): 3020. http://dx.doi.org/10.1121/1.400751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Birchall, D. "Computational fluid dynamics." British Journal of Radiology 82, special_issue_1 (2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Busse, F. H. "Geophysical Fluid Dynamics." Eos, Transactions American Geophysical Union 68, no. 50 (1987): 1666. http://dx.doi.org/10.1029/eo068i050p01666-02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Neilsen, David W., and Matthew W. Choptuik. "Ultrarelativistic fluid dynamics." Classical and Quantum Gravity 17, no. 4 (2000): 733–59. http://dx.doi.org/10.1088/0264-9381/17/4/302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Emanuel, George, and Daniel Bershader. "Analytical Fluid Dynamics." Physics Today 47, no. 11 (1994): 92–94. http://dx.doi.org/10.1063/1.2808705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hughes, Dez. "Transvascular fluid dynamics." Veterinary Anaesthesia and Analgesia 27, no. 1 (2000): 63–69. http://dx.doi.org/10.1046/j.1467-2995.2000.00006.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan, and Eric A. Hoffman. "Computational fluid dynamics." IEEE Engineering in Medicine and Biology Magazine 28, no. 3 (2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lavinio, A., Z. Czosnyka, and M. Czosnyka. "Cerebrospinal fluid dynamics." European Journal of Anaesthesiology 25 (February 2008): 137–41. http://dx.doi.org/10.1017/s0265021507003298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Jarvis, P. D., and J. W. van Holten. "Conformal fluid dynamics." Nuclear Physics B 734, no. 3 (2006): 272–86. http://dx.doi.org/10.1016/j.nuclphysb.2005.11.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wrobel, L. C. "Computational fluid dynamics." Engineering Analysis with Boundary Elements 9, no. 2 (1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Pericleous, K. A. "Computational fluid dynamics." International Journal of Heat and Mass Transfer 32, no. 1 (1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Von Wendt, J. "Computational fluid dynamics." Journal of Wind Engineering and Industrial Aerodynamics 40, no. 2 (1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Maxworthy, Tony. "Geophysical fluid dynamics." Tectonophysics 111, no. 1-2 (1985): 165–66. http://dx.doi.org/10.1016/0040-1951(85)90076-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Skrbek, L., J. J. Niemela, and R. J. Donnelly. "Cryogenic fluid dynamics." Physica B: Condensed Matter 280, no. 1-4 (2000): 41–42. http://dx.doi.org/10.1016/s0921-4526(99)01438-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Hamill, Nathalie. "Streamlining Fluid Dynamics." Mechanical Engineering 120, no. 03 (1998): 76–78. http://dx.doi.org/10.1115/1.1998-mar-1.

Pełny tekst źródła
Streszczenie:
More-intuitive pre-processors and advanced solvers are making computational fluid dynamics (CFD) software easier to use, more accurate, and faster. CFD techniques involve the solution of the Navier-Stokes equations that describe fluid-flow processes. Using MSC/ PATRAN as a starting point, AEA Technology plc, Harwell, Oxfordshire, England, has developed a pre-processor for its software that is fully computer-aided design (CAD)-compatible and works with native CAD databases such as CADDS 5, CATIA, Euclid3, Pro /ENG INEER, and Unigraphics. The simplicity of modeling complex geometries in CFX allo
Style APA, Harvard, Vancouver, ISO itp.
45

Lax, Peter D. "Computational Fluid Dynamics." Journal of Scientific Computing 31, no. 1-2 (2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pitarma, R. A., J. E. Ramos, M. E. Ferreira, and M. G. Carvalho. "Computational fluid dynamics." Management of Environmental Quality: An International Journal 15, no. 2 (2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Fox, Robert. "Information fluid dynamics." OCLC Systems & Services: International digital library perspectives 27, no. 2 (2011): 87–94. http://dx.doi.org/10.1108/10650751111135382.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Smalley, Larry L., and Jean P. Krisch. "String fluid dynamics." Classical and Quantum Gravity 13, no. 2 (1996): L19—L22. http://dx.doi.org/10.1088/0264-9381/13/2/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Smalley, L. L., and J. P. Krisch. "String fluid dynamics." Classical and Quantum Gravity 13, no. 5 (1996): 1277. http://dx.doi.org/10.1088/0264-9381/13/5/037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Shivamoggi, Bhimsen K., and Stanley A. Berger. "Theoretical Fluid Dynamics." Physics Today 51, no. 11 (1998): 69–70. http://dx.doi.org/10.1063/1.882072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!