Gotowa bibliografia na temat „Fluid flow and heat transfer”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fluid flow and heat transfer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Fluid flow and heat transfer"

1

Prasanna Kumar, T. "Casson Fluid Flow and Heat Transfer Past an Exponentially Stretching Surface." International Journal of Science and Research (IJSR) 11, no. 6 (2022): 366–70. http://dx.doi.org/10.21275/sr22604194759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Muthusamy, P., and Palanisamy Senthil Kumar. "Waste Heat Recovery Using Matrix Heat Exchanger from the Exhaust of an Automobile Engine for Heating Car’s Passenger Cabin." Advanced Materials Research 984-985 (July 2014): 1132–37. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1132.

Pełny tekst źródła
Streszczenie:
The main objective of our work is to analysis the heat transfer rate for various fluids with different matrix heat exchanger (MHE) models and flow characteristic in matrix heat exchanger by using computational fluid dynamics (CFD) package with small car. The amount of heat carried by the cold fluid from hot fluid is mainly depends upon the mass flow rate of the working fluid. The heat transfer area per unit volume of tube is more. So, it increases the temperature of the cold fluid. Here, the hot and cold fluids are moving in the alternate tubes of heat exchanger in the counter flow direction.
Style APA, Harvard, Vancouver, ISO itp.
3

Nallusamy, S. "Characterization of Al2O3/Water Nanofluid through Shell and Tube Heat Exchangers over Parallel and Counter Flow." Journal of Nano Research 45 (January 2017): 155–63. http://dx.doi.org/10.4028/www.scientific.net/jnanor.45.155.

Pełny tekst źródła
Streszczenie:
Nanotechnology has become one of the fastest growing scientific and engineering disciplines. Nano fluids have been established to possess enhanced thermal and physical properties such as thermal conductivity, thermal diffusivity, viscosity and convective heat transfer coefficients. The aim of this research article is to analyze the overall heat transfer coefficient by doing an experimental investigation on the convective heat transfer and flow characteristics of a nano fluid. In this research, an attempt was made for the nano fluid consisting of water and 1% volume concentration of Al2O3/water
Style APA, Harvard, Vancouver, ISO itp.
4

Yogesh, Sharma, and Yadav Neeraj. "Enhancement in Heat Exchange Process in a Shell and Tube Heat Exchanger using Nano-Particles." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 1791–95. https://doi.org/10.35940/ijeat.C4783.029320.

Pełny tekst źródła
Streszczenie:
Nanoparticles and nano-fluids are having its significant role in transforming and improvising the existing tools and techniques of science and other research. This experimental study deals with the parametric analysis of Al2O3 of size 20-30 nm and CuO of size 30-50 nm nanoparticles to improve the effectiveness of a shell and tube heat exchanger. Nanoparticles used in heat exchangers improved performance through better heat transfer characteristics. An experimental investigation was done on the forced convective heat transfer and flow characteristics of the nano-fluid flowing in a horizontal sh
Style APA, Harvard, Vancouver, ISO itp.
5

Coulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Qian, H., S. Kudashev, and V. Plotnikov. "Plotnikov V. Pulsating Enhanced Heat Transfer." Bulletin of Science and Practice 5, no. 8 (2019): 70–80. https://doi.org/10.33619/2414-2948/45/08.

Pełny tekst źródła
Streszczenie:
The paper mainly introduces the mechanism of turbulent fluid heat transfer enhancement and the factors affecting heat transfer. The physical parameters of pulsating fluid mainly include pulsation frequency and amplitude. The factors affecting heat transfer are the physical properties of the pulsating fluid and the installation of a pulsation generator. The position, the type of pulsation occurrence, the natural frequency of the heat exchange system, etc.; the methods for strengthening the pulsating heat transfer characteristics mainly include disturbing flow elements, changing the size of the
Style APA, Harvard, Vancouver, ISO itp.
7

Shaik, Faqruddin*1 Akula Nagaraja2 MV Kishore Kumar3 &. R. Chandra Sekhar Reddy4. "DESIGN AND ANALYSIS OF RADIATOR USING NANOFLUIDS." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 6, no. 6 (2019): 220–31. https://doi.org/10.5281/zenodo.3262360.

Pełny tekst źródła
Streszczenie:
Heat exchangers play an important part in the field of energy conservation, conversion and recovery. Numerous studies have focused on direct transfer type heat exchanger, where heat transfer between fluids occurs through a separating wall or into and out of a wall in a transient manner. There are two important phenomena happening in a heat exchanger: fluid flow in channels and heat transfer between fluids and channel walls. Thus, improvements to heat exchangers can be achieved by improving the processes occurring during those phenomena. Nano fluids, on the other hand, display much superior hea
Style APA, Harvard, Vancouver, ISO itp.
8

Zhou, Guo Fa, and Ting Peng. "Heat Transfer Enhancement of Viscoelastic Fluid in the Rectangle Microchannel with Constant Heat Fluxes." Applied Mechanics and Materials 117-119 (October 2011): 574–81. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.574.

Pełny tekst źródła
Streszczenie:
It has been found that viscoelastic fluid has evident heat transfer enhancement function in macro scale. But in micro scale, viscoelastic fluid’s flow and heat transfer characteristics are still unknown. In this paper, the heat transfer process of viscoelastic fluid in the microchannel is studied by numerical simulation method. The simulation results show that the maximum heat transfer enhancement of viscoelastic fluid is up to 800%, compared with pure viscous fluid. The viscoelastic fluid has such obvious heat transfer enhancement function because of its strong secondary flow. Laminar sub-lay
Style APA, Harvard, Vancouver, ISO itp.
9

Makinde, O. D., R. J. Moitsheki, R. N. Jana, B. H. Bradshaw-Hajek, and W. A. Khan. "Nonlinear Fluid Flow and Heat Transfer." Advances in Mathematical Physics 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/719102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rao, H. V. "Isentropic recuperative heat exchanger with regenerative work transfer." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, no. 4 (2000): 609–18. http://dx.doi.org/10.1243/0954406001523948.

Pełny tekst źródła
Streszczenie:
A counter-flow heat exchanger is considered to be the ideal method for recuperative heat transfer between hot and cold fluid streams. In this paper the concept of an isentropic heat exchanger with regenerative work transfer is developed. The overall effect is a mutual heat transfer between the two fluid streams without any net external heat or work transfers. The effectiveness for an isentropic heat exchanger with regenerative work transfer is derived for the case of fluid streams with constant specific heats and it is shown that it is greater than unity. The ‘isentropic effectiveness’ of a he
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Fluid flow and heat transfer"

1

Mala, Gh Mohiuddin. "Heat transfer and fluid flow in microchannels." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/NQ39562.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Beale, Steven Brydon. "Fluid flow and heat transfer in tube banks." Thesis, Imperial College London, 1992. http://hdl.handle.net/10044/1/8103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tian, Jing. "Fluid flow and heat transfer in woven textiles." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Matys, Paul. "Fluid flow and heat transfer in continuous casting processes." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28504.

Pełny tekst źródła
Streszczenie:
A three-dimensional finite difference code was developed to simulate fluid flow and heat transfer phenomena in continuous casting processes. The mathematical model describes steady state transport phenomena in a three dimensional solution domain that involves: turbulent fluid flow, natural and forced convection, conduction, release of latent heat at the solidus surface, and tracing of unknown location of liquid/solid interface. The governing differential equations are discretized using a finite volume method and a hybrid central, upwind differencing scheme. A fully three-dimensional ADI-like
Style APA, Harvard, Vancouver, ISO itp.
5

Janakiraman, S. V. "Fluid flow and heat transfer in transonic turbine cascades." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06112009-063614/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

McPhail, Stephen John. "Single-phase fluid flow and heat transfer in microtubes." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-36182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jagannatha, Deepak. "Heat transfer and fluid flow characteristics of synthetic jets." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/2437.

Pełny tekst źródła
Streszczenie:
This thesis presents a fundamental research investigation that examines the thermal and fluid flow behaviour of a special pulsating fluid jet mechanism called synthetic jet. It is envisaged that this novel heat transfer enhancement strategy can be developed for high-performance heat sinks in electronic cooling applications.The study considers a unique arrangement of a periodic jet induced by diaphragm motion within a cavity and mounted on a confined flow channel with a heated wall upon which the jet impingement occurs. The operation of this jet mechanism is examined as two special cases for un
Style APA, Harvard, Vancouver, ISO itp.
8

Mihic, Stefan Dragoljub. "CFD Investigation of Metalworking Fluid Flow and Heat Transfer in Grinding." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302189719.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ettrich, Jörg [Verfasser]. "Fluid Flow and Heat Transfer in Cellular Solids / Jörg Ettrich." Karlsruhe : KIT Scientific Publishing, 2014. http://www.ksp.kit.edu.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kent, Russell Malcolm. "Modelling fluid flow and heat transfer in some volcanic systems." Thesis, Lancaster University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Fluid flow and heat transfer"

1

Srinivasacharya, D., and K. Srinivas Reddy, eds. Numerical Heat Transfer and Fluid Flow. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1903-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Awasthi, Mukesh Kumar, Ashwani Kumar, Nitesh Dutt, and Satyvir Singh. Computational Fluid Flow and Heat Transfer. CRC Press, 2024. http://dx.doi.org/10.1201/9781003465171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Miguel, António F., and Luiz A. O. Rocha. Tree-Shaped Fluid Flow and Heat Transfer. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73260-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Whalley, P. B. Two-phase flow and heat transfer. Oxford University Press, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhukauskas, A. A. Heat transfer in turbulent fluid flows. Edited by Shlanchi͡a︡uskas A and Karni J. Hemisphere Pub. Corp., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

E, Launder B., and Reece G. J. 1940-, eds. Computer-aided engineering: Heat transfer and fluid flow. Ellis Horwood, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1931-, Yang Wen-Jei, and International Symposium on Transport Phenomena (1st : 1985 : Honolulu, Hawaii), eds. Heat transfer and fluid flow in rotating machinery. Hemisphere Pub. Corp., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yarin, L. P. Fluid flow, heat transfer and boiling in micro-channels. Springer, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Owen, J. M. Flow and heat transfer in rotating-disc systems. Research Studies Press, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Owen, J. M. Flow and heat transfer in rotating-disc systems. Research Studies, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Fluid flow and heat transfer"

1

Shang, De-Yi, and Liang-Cai Zhong. "Conservation Equations of Fluid Flow." In Heat and Mass Transfer. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kleinstreuer, Clement. "Biofluid Flow and Heat Transfer." In Fluid Mechanics and Its Applications. Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mobedi, Moghtada, and Gamze Gediz Ilis. "External Flow: Heat and Fluid Flow Over a Flat Plate." In Fundamentals of Heat Transfer. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0957-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Majumdar, Pradip. "Turbulent Flow Modeling." In Computational Fluid Dynamics and Heat Transfer, 2nd ed. CRC Press, 2021. http://dx.doi.org/10.1201/9780429183003-10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Faghri, Amir, and Yuwen Zhang. "Fluid-Particle Flow and Heat Transfer." In Fundamentals of Multiphase Heat Transfer and Flow. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22137-9_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gugulothu, Ravi, Narsimhulu Sanke, and A. V. S. S. K. S. Gupta. "Numerical Study of Heat Transfer Characteristics in Shell-and-Tube Heat Exchanger." In Numerical Heat Transfer and Fluid Flow. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pavankumar Reddy, M., and J. V. Ramana Murthy. "Heat Flow in a Rectangular Plate." In Numerical Heat Transfer and Fluid Flow. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sundén, Bengt. "Heat Transfer and Fluid Flow in Rib-Roughened Rectangular Ducts." In Heat Transfer Enhancement of Heat Exchangers. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9159-1_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Aparna, P., N. Pothanna, and J. V. Ramana Murthy. "Viscous Fluid Flow Past a Permeable Cylinder." In Numerical Heat Transfer and Fluid Flow. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_33.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Verma, Mrityunjai, and Varun Pratap Singh. "Boundary layer flow in aerospace applications." In Computational Fluid Flow and Heat Transfer. CRC Press, 2024. http://dx.doi.org/10.1201/9781003465171-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Fluid flow and heat transfer"

1

Narain, Amitabh, G. Yu, and Q. Liu. "COMPUTATIONAL SIMULATION AND FLOW PHYSICS FOR STRATIFIED/ANNULAR CONDENSING FLOWS." In Microgravity Fluid Physics & Heat Transfer. Begellhouse, 2023. http://dx.doi.org/10.1615/mfpht-1999.60.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ishii, Mamoru, G. Kocamustafaogullari, and Isao Kataoka. "PRESSURE AND FLUID TO FLUID SCALING LAWS FOR TWO-PHASE FLOW LOOP." In International Heat Transfer Conference 8. Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.4580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Prasad, Bhamidi V. S. S. S., A. A. Tawfek, and A. K. Mohanty. "FLUID FLOW AND HEAT TRANSFER MEASUREMENTS FROM ROTATING CYLINDER IN CROSS FLOW." In International Heat Transfer Conference 9. Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.2420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Guceri, Selcuk I. "Fluid Flow Problems in Processing of Composites Materials." In International Heat Transfer Conference 10. Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.1960.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Keshock, Edward G., Chin S. Lin, Patrick W. Dunn, Michael Harrison, Lawrence G. Edwards, and Joel Knapp. "PRESSURE DROP MEASUREMENTS OF TWO-PHASE FLOW IN HELICAL COILS UNDER MICROGRAVITY CONDITIONS." In Microgravity Fluid Physics & Heat Transfer. Begellhouse, 2023. http://dx.doi.org/10.1615/mfpht-1999.40.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Song, Fei, Chan Y. Ching, and Dan Ewing. "Fluid flow and heat transfer modeling in rotating heat pipes." In International Heat Transfer Conference 12. Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.2730.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Muñoz-Esparza, D., J. Pérez-García, E. Sanmiguel-Rojas, A. García-Pinar, and J. P. Solano-Fernández. "Numerical simulation of incompressible laminar fluid flow in tubes with wire coil inserts." In HEAT TRANSFER 2008. WIT Press, 2008. http://dx.doi.org/10.2495/ht080051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Takahira, Hiroyuki, and Sanjoy Banerjee. "NUMERICAL SIMULATION OF THREE DIMENSIONAL BUBBLE GROWTH AND DETACHMENT IN A MICROGRAVITY SHEAR FLOW." In Microgravity Fluid Physics & Heat Transfer. Begellhouse, 2023. http://dx.doi.org/10.1615/mfpht-1999.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Benedek, S. "SCALING OF TWO FLUID FLOW HEATED BY FUEL ROD." In International Heat Transfer Conference 9. Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.4230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Borissov, Anatoly, Vladimir Shtern, Fazle Hussain, Anatoly Borissov, Vladimir Shtern, and Fazle Hussain. "Modeling flow and heat transfer in vortex burners." In 28th Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Fluid flow and heat transfer"

1

Juric, D., G. Tryggvason, and J. Han. Direct numerical simulations of fluid flow, heat transfer and phase changes. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/463676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chan, B. Improved modeling and numerics to solve two-dimensional elliptic fluid flow and heat transfer problems. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/5579622.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

FRANCIS JR., NICHOLAS D., MICHAEL T. ITAMURA, STEPHEN W. WEBB, and DARRYL L. JAMES. CFD Modeling of Natural Convection Heat Transfer and Fluid Flow in Yucca Mountain Project (YMP) Enclosures. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/809609.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

McHugh, P. R., and J. D. Ramshaw. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10140275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

McHugh, P. R., and J. D. Ramshaw. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5504904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pruess, K. Multiphase fluid flow and heat transfer at Hanford single-shell tanks - a progress report on modeling studies. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/764377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Orloff, D., B. Hojjatie, and F. Bloom. High-intensity drying process: Impulse drying. Progress report on modeling of fluid flow and heat transfer in a crown compensated impulse drying roll: The heat transfer problem. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/183137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

J. Rutqvist, C.F. Tsang, and Y. Tsang. Analysis of Coupled Multiphase Fluid Flow, Heat Transfer and Mechanical Deformation at the Yucca Mountain Drift Scale Test. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/850440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Barney, R. Hydrodynamic instabilities and heat transfer characteristics in the duct flow of a fluid in the supercritical thermodynamic regime. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1736328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xie, Gao, and Olsen. PR-179-13601-R01 CFD Analysis of the Heat Transfer Characteristics and the Effect of Thermowells. Pipeline Research Council International, Inc. (PRCI), 2013. http://dx.doi.org/10.55274/r0010818.

Pełny tekst źródła
Streszczenie:
Thermowells are widely utilized for temperature measurement in metering stations on natural gas pipelines. The use of thermowells induces errors in the measurements of gas temperature due to the heat transfer processes involved in the thermowell installations, which results in errors in the flow rate calculations. In order to study the temperature measurement accuracy of using thermowells, a three-dimensional computational fluid dynamics study is performed and an in-depth investigation of the effect of the multiple variables on gas temperature measurement is carried out. The parameters under i
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!