Artykuły w czasopismach na temat „Fluid flow and heat transfer”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluid flow and heat transfer”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Prasanna Kumar, T. "Casson Fluid Flow and Heat Transfer Past an Exponentially Stretching Surface." International Journal of Science and Research (IJSR) 11, no. 6 (2022): 366–70. http://dx.doi.org/10.21275/sr22604194759.
Pełny tekst źródłaMuthusamy, P., and Palanisamy Senthil Kumar. "Waste Heat Recovery Using Matrix Heat Exchanger from the Exhaust of an Automobile Engine for Heating Car’s Passenger Cabin." Advanced Materials Research 984-985 (July 2014): 1132–37. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1132.
Pełny tekst źródłaNallusamy, S. "Characterization of Al2O3/Water Nanofluid through Shell and Tube Heat Exchangers over Parallel and Counter Flow." Journal of Nano Research 45 (January 2017): 155–63. http://dx.doi.org/10.4028/www.scientific.net/jnanor.45.155.
Pełny tekst źródłaYogesh, Sharma, and Yadav Neeraj. "Enhancement in Heat Exchange Process in a Shell and Tube Heat Exchanger using Nano-Particles." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 1791–95. https://doi.org/10.35940/ijeat.C4783.029320.
Pełny tekst źródłaCoulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.
Pełny tekst źródłaQian, H., S. Kudashev, and V. Plotnikov. "Plotnikov V. Pulsating Enhanced Heat Transfer." Bulletin of Science and Practice 5, no. 8 (2019): 70–80. https://doi.org/10.33619/2414-2948/45/08.
Pełny tekst źródłaShaik, Faqruddin*1 Akula Nagaraja2 MV Kishore Kumar3 &. R. Chandra Sekhar Reddy4. "DESIGN AND ANALYSIS OF RADIATOR USING NANOFLUIDS." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 6, no. 6 (2019): 220–31. https://doi.org/10.5281/zenodo.3262360.
Pełny tekst źródłaZhou, Guo Fa, and Ting Peng. "Heat Transfer Enhancement of Viscoelastic Fluid in the Rectangle Microchannel with Constant Heat Fluxes." Applied Mechanics and Materials 117-119 (October 2011): 574–81. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.574.
Pełny tekst źródłaMakinde, O. D., R. J. Moitsheki, R. N. Jana, B. H. Bradshaw-Hajek, and W. A. Khan. "Nonlinear Fluid Flow and Heat Transfer." Advances in Mathematical Physics 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/719102.
Pełny tekst źródłaRao, H. V. "Isentropic recuperative heat exchanger with regenerative work transfer." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, no. 4 (2000): 609–18. http://dx.doi.org/10.1243/0954406001523948.
Pełny tekst źródłaZhang, Junqiang, Zhengping Zou, and Chao Fu. "A Review of the Complex Flow and Heat Transfer Characteristics in Microchannels." Micromachines 14, no. 7 (2023): 1451. http://dx.doi.org/10.3390/mi14071451.
Pełny tekst źródłaYue, Qingwen, Xide Lai, Xiaoming Chen, and Ping Hu. "Study on heat transfer characteristics of flow heat coupling of horizontal spiral tube heat exchanger." Thermal Science and Engineering 4, no. 2 (2021): 23. http://dx.doi.org/10.24294/tse.v4i2.1516.
Pełny tekst źródłaDr., G. V. P. N. Srikanth, Sekhar Gorthi Raja, and G. Srinivas Dr. "THE CONVECTIVE HEAT AND MASS TRANSFER OF NANO-FLUID PAST A PERMEABLE INCLINED OSCILLATING FLAT PLATE." International Journal of Multidisciplinary Research and Modern Education (IJMRME) 2, no. 2 (2016): 10–20. https://doi.org/10.5281/zenodo.61601.
Pełny tekst źródłaGunale, Rahul B., Ashish S. Gajare, Omkar D. Khollam, Aakash G. Gawade, and Sanchit S. Salvi. "Experimental Evaluation of Nanofluid for Improved Cooling Efficiency in an AL Mini Channel Heat Sink." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (2022): 3400–3406. http://dx.doi.org/10.22214/ijraset.2022.43146.
Pełny tekst źródłaAhmed, Minhaz, and Prasanjit Das. "Experimental Investigation of Convection Heat Transfer in a Helical Coil and Shell Heat Exchanger and Drag Reduction by Guar Gum." SciEn Conference Series: Engineering 1 (May 7, 2025): 125–29. https://doi.org/10.38032/scse.2025.1.23.
Pełny tekst źródłaWen, Xiangyue, Xiting Long, and Zhaoying Yang. "Numerical and Analytical Study of Fluid Flow and Thermal Transfer in a Rough Fracture." Geofluids 2022 (May 31, 2022): 1–12. http://dx.doi.org/10.1155/2022/2683980.
Pełny tekst źródłaRajavel, Rangasamy, and Kaliannagounder Saravanan. "Heat transfer studies on spiral plate heat exchanger." Thermal Science 12, no. 3 (2008): 85–90. http://dx.doi.org/10.2298/tsci0803085r.
Pełny tekst źródłaSheremet, Mikhail A., and Ioan Pop. "Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 3 (2018): 624–40. http://dx.doi.org/10.1108/hff-02-2017-0059.
Pełny tekst źródłaMonu, Sharma. "Studies on the Enhancement of Heat Transfer in the Counter-Flow Heat Exchanger(HX)- A Review." Journal of Advanced Mechanical Sciences 2, no. 1 (2023): 26–30. https://doi.org/10.5281/zenodo.7789306.
Pełny tekst źródłaAjeeb, Wagd, Monica S. A. Oliveira, Nelson Martins, and S. M. Sohel Murshed. "Numerical approach for fluids flow and thermal convection in microchannels." Journal of Physics: Conference Series 2116, no. 1 (2021): 012049. http://dx.doi.org/10.1088/1742-6596/2116/1/012049.
Pełny tekst źródłaChowdhury, Manojit, Ankita Banerjee, Rahul Das, Shrilekha Das, and Kamlesh Prasad. "Influence of Temperature and Mass Flow Rate on Heat Transfer Characteristics in Parallel Flow Corrugated Plate Heat Exchanger." Journal of Agricultural Engineering (India) 62, no. 1 (2025): 120–34. https://doi.org/10.52151/jae2025621.1917.
Pełny tekst źródłaGul, Taza, and Zaitoon Khan. "Thin film Maxwell-Power Law Fluid Flow on an extending surface." City University International Journal of Computational Analysis 6, no. 1 (2023): 1–10. http://dx.doi.org/10.33959/cuijca.v6i1.68.
Pełny tekst źródłaShang, Fu Min, Jian Hong Liu, and Deng Ying Liu. "Experimental Investigation on the Heat Transfer Characteristics of Nanofluids in Self-Exciting Mode Oscillating-Flow Heat Pipe." Advanced Materials Research 396-398 (November 2011): 250–54. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.250.
Pełny tekst źródłaKumar Gaur, Rohit, Dr Shashi Kumar Jain, and Dr Sukul Lomash. "Experimental Investigation on Triple Concentric Tube Heat Exchanger with Helical Baffles." SMART MOVES JOURNAL IJOSCIENCE 6, no. 11 (2020): 14–20. http://dx.doi.org/10.24113/ijoscience.v6i11.324.
Pełny tekst źródłaPasupuleti, Ravindra Kumar, Manindra Bedhapudi, Subba Reddy Jonnala, and Appa Rao Kandimalla. "Computational Analysis of Conventional and Helical Finned Shell and Tube Heat Exchanger Using ANSYS-CFD." International Journal of Heat and Technology 39, no. 6 (2021): 1755–62. http://dx.doi.org/10.18280/ijht.390608.
Pełny tekst źródłaTama Dida Efendi, Hilbran, Budi Kristiawan, Koji Enoki, Agung Tri Wijayanta, and Syamsul Hadi. "Enhancing Heat Transfer Performance: Nanofluids Application in Helical Microfin Tube Concentric Heat Exchangers." E3S Web of Conferences 465 (2023): 01019. http://dx.doi.org/10.1051/e3sconf/202346501019.
Pełny tekst źródłaMuhammad Hazeer Khiralsaleh Mohamad Rohaizan, Nor Azwadi Che Sidik, and Kamyar Shameli. "Numerical Analysis of Heat Transfer in Microchannel Heat Transfer in Microchannel Heat Sink using Flow Disruption." Journal of Advanced Research Design 106, no. 1 (2024): 1–14. http://dx.doi.org/10.37934/ard.106.1.114.
Pełny tekst źródłaKumar, Shailesh Ranjan, and Satyendra Singh. "Experimental Study on Microchannel with Addition of Microinserts Aiming Heat Transfer Performance Improvement." Water 14, no. 20 (2022): 3291. http://dx.doi.org/10.3390/w14203291.
Pełny tekst źródłaGopal, Arumugam, Prabhakaran Duraisamy, and Thirumarimurugan Marimuthu. "Experimental Investigation on Heat Transfer and Pressure Drop Characteristics of Food Additive in Dimple Plate Heat Exchanger." Revista de Chimie 73, no. 3 (2022): 97–109. http://dx.doi.org/10.37358/rc.22.3.8539.
Pełny tekst źródłaKumar, Shailesh Ranjan, and Satyendra Singh. "Numerical Analysis for Augmentation of Thermal Performance of Single-Phase Flow in Microchannel Heat Sink of Different Sizes with or without Micro-Inserts." Fluids 7, no. 5 (2022): 149. http://dx.doi.org/10.3390/fluids7050149.
Pełny tekst źródłaWalsh, Christian, Rana Ronak, Rathod Hiren, Patel Dhiraj, and Patel Atul. "A Case Study on Basic of Heat Exchanger." Research and Applications of Thermal Engineering 6, no. 3 (2023): 31–36. https://doi.org/10.5281/zenodo.10319184.
Pełny tekst źródłaRajeh, Taha, Ping Tu, Hua Lin, and Houlei Zhang. "Thermo-Fluid Characteristics of High Temperature Molten Salt Flowing in Single-Leaf Type Hollow Paddles." Entropy 20, no. 8 (2018): 581. http://dx.doi.org/10.3390/e20080581.
Pełny tekst źródłaNaghavi, M. R., M. A. Akhavan-Behabadi, and M. Fakoor Pakdaman. "Experimental Investigation on Heat Transfer and Pressure Drop of CNT-Base Oil Nano-Fluid Flow in Rectangular Channels under Constant Wall Temperature." Advanced Materials Research 622-623 (December 2012): 806–10. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.806.
Pełny tekst źródłaFitrianto, Taufik Ramadhan, and Suhanan. "Simulation of performance enhancement of heat exchanger with twisted tapes using ANSYS software." Jurnal Teknik Mesin Indonesia 18, no. 2 (2023): 119–24. http://dx.doi.org/10.36289/jtmi.v18i2.454.
Pełny tekst źródłaGarai, Anirban, Jan Kleissl, and Sutanu Sarkar. "Flow and heat transfer in convectively unstable turbulent channel flow with solid-wall heat conduction." Journal of Fluid Mechanics 757 (September 19, 2014): 57–81. http://dx.doi.org/10.1017/jfm.2014.479.
Pełny tekst źródłaV, Anitha. "Flow and Heat Transfer in a Non-Newtonian Dusty Fluid with Particle Suspension." International Journal of Science and Research (IJSR) 6, no. 6 (2017): 2854–64. http://dx.doi.org/10.21275/es231230110133.
Pełny tekst źródłaCorzo, Santiago Francisco, Damian Enrique Ramajo, and Norberto Marcelo Nigro. "High-Rayleigh heat transfer flow." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 9 (2017): 1928–54. http://dx.doi.org/10.1108/hff-05-2016-0176.
Pełny tekst źródłaLu, Qun Hui, Yang Yan Zheng, and Biao Yuan. "A Simulative Study on the Impact of Physical Property Parametersupon Flow and Heat Transfer in Annular Space." Advanced Materials Research 516-517 (May 2012): 858–65. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.858.
Pełny tekst źródłaSaboya, F. E. M., and C. E. S. M. da Costa. "Minimum Irreversibility Criteria for Heat Exchanger Configurations." Journal of Energy Resources Technology 121, no. 4 (1999): 241–46. http://dx.doi.org/10.1115/1.2795989.
Pełny tekst źródłaM, Vijayakumar, and Mahendra G. "Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using Tio2 Nanofluid Coolant." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (2022): 209–14. http://dx.doi.org/10.22214/ijraset.2022.41171.
Pełny tekst źródłaNingsih, Erlinda, Isa Albanna, Aita Pudji Witari, and Gistanya Lindar Anggraini. "PERFORMANCE SIMULATION ON THE SHELL AND TUBE OF HEAT EXCHANGER BY ASPEN HYSYS V.10." Jurnal Rekayasa Mesin 13, no. 3 (2022): 701–6. http://dx.doi.org/10.21776/jrm.v13i3.1078.
Pełny tekst źródłaHartnett, J. P. "1990 Max Jakob Memorial Award Lecture: Viscoelastic Fluids: A New Challenge in Heat Transfer." Journal of Heat Transfer 114, no. 2 (1992): 296–303. http://dx.doi.org/10.1115/1.2911275.
Pełny tekst źródłaWang, Zhenyu, Jie Wang, Ma Yunhai, and Lining Wang. "Structural optimization design and heat transfer characteristics of multi-degree-of-freedom spiral plate type agricultural machinery equipment heat exchanger." Thermal Science 23, no. 5 Part A (2019): 2525–33. http://dx.doi.org/10.2298/tsci181115140w.
Pełny tekst źródłaRekha, Maaliger B., Ioannis E. Sarris, Javali K. Madhukesh, Kondethimmanahalli R. Raghunatha, and Ballajja C. Prasannakumara. "Activation Energy Impact on Flow of AA7072-AA7075/Water-Based Hybrid Nanofluid through a Cone, Wedge and Plate." Micromachines 13, no. 2 (2022): 302. http://dx.doi.org/10.3390/mi13020302.
Pełny tekst źródłaSiddiqui, Abdul, Muhammad Zeb, Tahira Haroon, and Qurat-ul-Ain Azim. "Exact Solution for the Heat Transfer of Two Immiscible PTT Fluids Flowing in Concentric Layers through a Pipe." Mathematics 7, no. 1 (2019): 81. http://dx.doi.org/10.3390/math7010081.
Pełny tekst źródłaJaworski, Artur J. "Special Issue “Fluid Flow and Heat Transfer”." Energies 12, no. 16 (2019): 3044. http://dx.doi.org/10.3390/en12163044.
Pełny tekst źródłaMohiuddin Mala, G., Dongqing Li, and J. D. Dale. "Heat transfer and fluid flow in microchannels." International Journal of Heat and Mass Transfer 40, no. 13 (1997): 3079–88. http://dx.doi.org/10.1016/s0017-9310(96)00356-0.
Pełny tekst źródłaKryuchkov, I. I., and R. R. Ionaitis. "Heat transfer accompanying a falling fluid flow." Soviet Atomic Energy 66, no. 1 (1989): 20–26. http://dx.doi.org/10.1007/bf01121067.
Pełny tekst źródłaArio Geraldi and RR. Sri Poernomo Sari. "EFFECTS PARTICLES CONCENTRATION OF Al2O3 AND TiO2 TO CONVECTION COEFFICIENT ON DOUBLE PIPE HEAT EXCHANGER." Jurnal Ilmiah Teknik 1, no. 1 (2022): 01–08. http://dx.doi.org/10.56127/juit.v1i1.66.
Pełny tekst źródłaKIMURA, Fumiyoshi, and Kenzo KITAMURA. "A304 FLUID FLOW AND HEAT TRANSFER OF NATURAL CONVECTION ADJACENT TO UPWARD-FACING, INCLINED, HEATED PLATE : AIR CASE(Heat Transfer-1)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–19_—_3–24_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-19_.
Pełny tekst źródła