Artykuły w czasopismach na temat „Fluids motion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluids motion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fetecau, Constantin, Tahir Mushtaq Qureshi, Abdul Rauf, and Dumitru Vieru. "On the Modified Stokes Second Problem for Maxwell Fluids with Linear Dependence of Viscosity on the Pressure." Symmetry 14, no. 2 (2022): 219. http://dx.doi.org/10.3390/sym14020219.
Pełny tekst źródłaFetecau, Constantin, Dumitru Vieru, Abdul Rauf, and Tahir Mushtaq Qureshi. "STEADY-STATE SOLUTIONS FOR SOME MOTIONS OF MAXWELL FLUIDS WITH PRESSURE-DEPENDENCE OF VISCOSITY." Journal of Mathematical Sciences: Advances and Applications 68, no. 1 (2021): 1–28. http://dx.doi.org/10.18642/jmsaa_7100122224.
Pełny tekst źródłaFetecau, Constantin, Dumitru Vieru, Waqas Nazeer, and Shehraz Akhtar. "Long-time solutions for some mixed boundary value problems depicting motions of a class of Maxwell fluids with pressure dependent viscosity." Open Journal of Mathematical Sciences 6, no. 1 (2022): 192–204. http://dx.doi.org/10.30538/oms2022.0188.
Pełny tekst źródłaFetecau, Constantin, Dumitru Vieru, and Ahmed Zeeshan. "Analytical Solutions for Two Mixed Initial-Boundary Value Problems Corresponding to Unsteady Motions of Maxwell Fluids through a Porous Plate Channel." Mathematical Problems in Engineering 2021 (April 24, 2021): 1–13. http://dx.doi.org/10.1155/2021/5539007.
Pełny tekst źródłaFetecau, Constantin, Dumitru Vieru, Tehseen Abbas, and Rahmat Ellahi. "Analytical Solutions of Upper Convected Maxwell Fluid with Exponential Dependence of Viscosity under the Influence of Pressure." Mathematics 9, no. 4 (2021): 334. http://dx.doi.org/10.3390/math9040334.
Pełny tekst źródłaFetecau, Constantin, and Dumitru Vieru. "General Solutions for Some MHD Motions of Second-Grade Fluids between Parallel Plates Embedded in a Porous Medium." Symmetry 15, no. 1 (2023): 183. http://dx.doi.org/10.3390/sym15010183.
Pełny tekst źródłaFetecau, Constantin, Rahmat Ellahi, and Sadiq M. Sait. "Mathematical Analysis of Maxwell Fluid Flow through a Porous Plate Channel Induced by a Constantly Accelerating or Oscillating Wall." Mathematics 9, no. 1 (2021): 90. http://dx.doi.org/10.3390/math9010090.
Pełny tekst źródłaCaimmi, R. "R fluids." Serbian Astronomical Journal, no. 176 (2008): 23–35. http://dx.doi.org/10.2298/saj0876023c.
Pełny tekst źródłaFetecau, Constantin, Dumitru Vieru, Abdul Rauf, and Tahir Mushtaq Qureshi. "Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure." Zeitschrift für Naturforschung A 76, no. 12 (2021): 1107–24. http://dx.doi.org/10.1515/zna-2021-0212.
Pełny tekst źródłaFetecau, Constantin, and Dumitru Vieru. "Steady-state solutions for modified Stokes’ second problem of Maxwell fluids with power-law dependence of viscosity on the pressure." Open Journal of Mathematical Sciences 6, no. 1 (2022): 14–24. http://dx.doi.org/10.30538/oms2022.0175.
Pełny tekst źródłaZhang, Xiangxiang, Kai Gu, Chengyu Liu, Yangbing Cao, J. G. Wang, and Feng Gao. "Study on Fluid Front Motion of Water, Nitrogen, and CO2 during Anisotropic Flow in Shale Reservoirs." Geofluids 2022 (December 5, 2022): 1–9. http://dx.doi.org/10.1155/2022/7202972.
Pełny tekst źródłaFetecau, Constantin, and Abdul Rauf. ""Permanent solutions for some motions of UCM fluids with power-law dependence of viscosity on the pressure"." Studia Universitatis Babes-Bolyai Matematica 66, no. 1 (2021): 197–209. http://dx.doi.org/10.24193/subbmath.2021.1.16.
Pełny tekst źródłaFetecau, Constantin, and Costică Moroşanu. "Influence of Magnetic Field and Porous Medium on the Steady State and Flow Resistance of Second Grade Fluids over an Infinite Plate." Symmetry 15, no. 6 (2023): 1269. http://dx.doi.org/10.3390/sym15061269.
Pełny tekst źródłaNelson, J. K. "Dielectric fluids in motion." IEEE Electrical Insulation Magazine 10, no. 3 (1994): 16–28. http://dx.doi.org/10.1109/57.285419.
Pełny tekst źródłaFetecau, Corina, Qammar Rubbab, Shahraz Akhter, and Constantin Fetecau. "New methods to provide exact solutions for some unidirectional motions of rate type fluids." Thermal Science 20, no. 1 (2016): 7–20. http://dx.doi.org/10.2298/tsci130225130f.
Pełny tekst źródłaRana, Mehwish, Nazish Shahid, and Azhar Ali Zafar. "Effects of Side Walls on the Motion Induced by an Infinite Plate that Applies Shear Stresses to an Oldroyd-B Fluid." Zeitschrift für Naturforschung A 68, no. 12 (2013): 725–34. http://dx.doi.org/10.5560/zna.2013-0052.
Pełny tekst źródłaHohmann, Manuel. "Non-metric fluid dynamics and cosmology on Finsler spacetimes." International Journal of Modern Physics A 31, no. 02n03 (2016): 1641012. http://dx.doi.org/10.1142/s0217751x16410128.
Pełny tekst źródłaMammadova, Maleyka. "ABOUT DARSY’S LAW DURING FLUIDS MOTION IN THE MICRO-CRACKED CHANNELS." EUREKA: Physics and Engineering 5 (September 30, 2020): 3–11. http://dx.doi.org/10.21303/2461-4262.2020.001386.
Pełny tekst źródłaVieru, D., C. Fetecau, and C. Bridges. "Analytical Solutions for a General Mixed Boundary Value Problem Associated with Motions of Fluids with Linear Dependence of Viscosity on the Pressure." International Journal of Applied Mechanics and Engineering 25, no. 3 (2020): 181–97. http://dx.doi.org/10.2478/ijame-2020-0042.
Pełny tekst źródłaGodin, Oleg A. "Finite-amplitude acoustic-gravity waves: exact solutions." Journal of Fluid Mechanics 767 (February 12, 2015): 52–64. http://dx.doi.org/10.1017/jfm.2015.40.
Pełny tekst źródłaGad-el-Hak, Mohamed. "Splendor of fluids in motion." Progress in Aerospace Sciences 29, no. 2 (1992): 81–123. http://dx.doi.org/10.1016/0376-0421(92)90004-2.
Pełny tekst źródłaKramer, Dietrich. "Perfect fluids with conformal motion." General Relativity and Gravitation 22, no. 10 (1990): 1157–62. http://dx.doi.org/10.1007/bf00759016.
Pełny tekst źródłaMillán-Rodríguez, Juan, Michael Bestehorn, Carlos Pérez-García, Rudolf Friedrich, and Marc Neufeld. "Defect Motion in Rotating Fluids." Physical Review Letters 74, no. 4 (1995): 530–33. http://dx.doi.org/10.1103/physrevlett.74.530.
Pełny tekst źródłaVelescu, Cornel, and Nicolae Calin Popa. "Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/478401.
Pełny tekst źródłaBush, J. W. M., H. A. Stone, and J. Bloxham. "Axial drop motion in rotating fluids." Journal of Fluid Mechanics 282 (January 10, 1995): 247–78. http://dx.doi.org/10.1017/s0022112095000139.
Pełny tekst źródłaWalicka, A. "Basic Flows of Generalized Second Grade Fluids Based on a Sisko Model." International Journal of Applied Mechanics and Engineering 22, no. 4 (2017): 1019–33. http://dx.doi.org/10.1515/ijame-2017-0065.
Pełny tekst źródłaKoutselos, A. D., and J. Samios. "Transport properties of diatomic ions in moderately dense gases in an electrostatic field." Pure and Applied Chemistry 76, no. 1 (2004): 223–29. http://dx.doi.org/10.1351/pac200476010223.
Pełny tekst źródłaYasappan, Justine, Ángela Jiménez-Casas, and Mario Castro. "Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments." Abstract and Applied Analysis 2013 (2013): 1–20. http://dx.doi.org/10.1155/2013/748683.
Pełny tekst źródłaNaumov I.V., Sharifullin B.R., and Shtern V.N. "Influence of the upper liquid layer on vortex breakdown in the bioreactor model." Technical Physics Letters 48, no. 10 (2022): 42. http://dx.doi.org/10.21883/tpl.2022.10.54797.19259.
Pełny tekst źródłaKararsiz, Gokhan, Yasin Cagatay Duygu, Zhengguang Wang, Louis William Rogowski, Sung Jea Park, and Min Jun Kim. "Navigation and Control of Motion Modes with Soft Microrobots at Low Reynolds Numbers." Micromachines 14, no. 6 (2023): 1209. http://dx.doi.org/10.3390/mi14061209.
Pełny tekst źródłaFetecau, Constantin, and Dumitru Vieru. "Symmetric and Non-Symmetric Flows of Burgers’ Fluids through Porous Media between Parallel Plates." Symmetry 13, no. 7 (2021): 1109. http://dx.doi.org/10.3390/sym13071109.
Pełny tekst źródłaFORBES, LAWRENCE K., RHYS A. PAUL, MICHAEL J. CHEN, and DAVID E. HORSLEY. "KELVIN–HELMHOLTZ CREEPING FLOW AT THE INTERFACE BETWEEN TWO VISCOUS FLUIDS." ANZIAM Journal 56, no. 4 (2015): 317–58. http://dx.doi.org/10.1017/s1446181115000085.
Pełny tekst źródłaFeireisl, E. "Mathematical Theory of Fluids in Motion." Siberian Advances in Mathematics 28, no. 4 (2018): 233–64. http://dx.doi.org/10.3103/s1055134418040016.
Pełny tekst źródłaMillan‐Rodriguez, Juan, Carlos Pérez‐García, Michael Bestehorn, Marc Neufeld, and Rudolf Friedrich. "Motion of defects in rotating fluids." Chaos: An Interdisciplinary Journal of Nonlinear Science 4, no. 2 (1994): 369–76. http://dx.doi.org/10.1063/1.166014.
Pełny tekst źródłaErnst, Dominique, Marcel Hellmann, Jürgen Köhler, and Matthias Weiss. "Fractional Brownian motion in crowded fluids." Soft Matter 8, no. 18 (2012): 4886. http://dx.doi.org/10.1039/c2sm25220a.
Pełny tekst źródłaGuo, Junke. "Motion of spheres falling through fluids." Journal of Hydraulic Research 49, no. 1 (2011): 32–41. http://dx.doi.org/10.1080/00221686.2010.538572.
Pełny tekst źródłaEuler, Leonhard. "Principles of the motion of fluids." Physica D: Nonlinear Phenomena 237, no. 14-17 (2008): 1840–54. http://dx.doi.org/10.1016/j.physd.2008.04.019.
Pełny tekst źródłaChen, Yu, Qinjun Kang, Qingdong Cai, Moran Wang, and Dongxiao Zhang. "Lattice Boltzmann Simulation of Particle Motion in Binary Immiscible Fluids." Communications in Computational Physics 18, no. 3 (2015): 757–86. http://dx.doi.org/10.4208/cicp.101114.150415a.
Pełny tekst źródłaTripathi, M. K., K. C. Sahu, G. Karapetsas, K. Sefiane, and O. K. Matar. "Non-isothermal bubble rise: non-monotonic dependence of surface tension on temperature." Journal of Fluid Mechanics 763 (December 10, 2014): 82–108. http://dx.doi.org/10.1017/jfm.2014.659.
Pełny tekst źródłaFetecau, Constantin, Abdul Rauf, Tahir Mushtaq Qureshi, and Masood Khan. "Permanent solutions for some oscillatory motions of fluids with power-law dependence of viscosity on the pressure and shear stress on the boundary." Zeitschrift für Naturforschung A 75, no. 8 (2020): 757–69. http://dx.doi.org/10.1515/zna-2020-0135.
Pełny tekst źródłaJamil, Muhammad, and Najeeb Alam Khan. "Slip Effects on Fractional Viscoelastic Fluids." International Journal of Differential Equations 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/193813.
Pełny tekst źródłaCui, Wenzheng, Minli Bai, Jizu Lv, and Xiaojie Li. "On the Microscopic Flow Characteristics of Nanofluids by Molecular Dynamics Simulation on Couette Flow." Open Fuels & Energy Science Journal 5, no. 1 (2012): 21–27. http://dx.doi.org/10.2174/1876973x01205010021.
Pełny tekst źródłaMain, B. G. "Explosion Hazards in Offshore Motion Compensators." Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 199, no. 4 (1985): 229–35. http://dx.doi.org/10.1243/pime_proc_1985_199_029_02.
Pełny tekst źródłaSong, Sanggeun, Seong Jun Park, Minjung Kim, et al. "Transport dynamics of complex fluids." Proceedings of the National Academy of Sciences 116, no. 26 (2019): 12733–42. http://dx.doi.org/10.1073/pnas.1900239116.
Pełny tekst źródłaHarnoy, A. "Squeeze Film Flow of Elastic Fluids at Steady Motion and Dynamic Loads." Journal of Tribology 109, no. 4 (1987): 691–95. http://dx.doi.org/10.1115/1.3261539.
Pełny tekst źródłaImran, M., M. Kamran, M. Athar, and A. A. Zafar. "Taylor–Couette flow of a fractional second grade fluid in an annulus due to a time-dependent couple." Nonlinear Analysis: Modelling and Control 16, no. 1 (2011): 47–58. http://dx.doi.org/10.15388/na.16.1.14114.
Pełny tekst źródłaGondret, P., M. Lance, and L. Petit. "Bouncing motion of spherical particles in fluids." Physics of Fluids 14, no. 2 (2002): 643–52. http://dx.doi.org/10.1063/1.1427920.
Pełny tekst źródłaEuler, Leonhard. "General principles of the motion of fluids." Physica D: Nonlinear Phenomena 237, no. 14-17 (2008): 1825–39. http://dx.doi.org/10.1016/j.physd.2008.02.023.
Pełny tekst źródłaKhasanov, M. M. "Specific features of motion of rheopectic fluids." Journal of Engineering Physics and Thermophysics 66, no. 6 (1994): 638–43. http://dx.doi.org/10.1007/bf00867964.
Pełny tekst źródłaDe Boer, P. C. T. "Thermally driven motion of highly viscous fluids." International Journal of Heat and Mass Transfer 29, no. 5 (1986): 681–88. http://dx.doi.org/10.1016/0017-9310(86)90120-1.
Pełny tekst źródła