Artykuły w czasopismach na temat „Fluorescent nanoprobes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluorescent nanoprobes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yuan, Huanxiang, Yutong Li, Jiaqi Lv, et al. "Recent Advances in Fluorescent Nanoprobes for Food Safety Detection." Molecules 28, no. 14 (2023): 5604. http://dx.doi.org/10.3390/molecules28145604.
Pełny tekst źródłaZha, Yiqian, Xinyuan Cui, Yanlei Liu, et al. "Two-Photon Nanoprobe for NIR-II Imaging of Tumour and Biosafety Evaluation." Journal of Biomedical Nanotechnology 18, no. 3 (2022): 807–17. http://dx.doi.org/10.1166/jbn.2022.3275.
Pełny tekst źródłaWang, Xiao-Lin, Xiao Han, Xiao-Ying Tang, Xiao-Jun Chen, and Han-Jun Li. "A Review of Off–On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications." Journal of Biomedical Nanotechnology 17, no. 7 (2021): 1249–72. http://dx.doi.org/10.1166/jbn.2021.3117.
Pełny tekst źródłaBoukari, Hacène, Candida Silva, Ralph Nossal, and Ferenc Horkay. "Nanoprobe Diffusion in Poly(Vinyl-alcohol) Gels and Solutions: Effects of pH and Dehydration." MRS Proceedings 1622 (2014): 135–45. http://dx.doi.org/10.1557/opl.2014.74.
Pełny tekst źródłaDai, Li, Wenjun Wang, Jie Yan, and Yong Liu. "Novel Synthesis of Fluorescein Isothiocyanate-Based Fluorescent Nanoprobes in Imaging Lung Inflammation." Journal of Biomedical Nanotechnology 20, no. 4 (2024): 615–27. http://dx.doi.org/10.1166/jbn.2024.3795.
Pełny tekst źródłaChen, Jingyao, Dan Li, Chenqi Zhou, et al. "Principle Superiority and Clinical Extensibility of 2D and 3D Charged Nanoprobe Detection Platform Based on Electrophysiological Characteristics of Circulating Tumor Cells." Cells 12, no. 2 (2023): 305. http://dx.doi.org/10.3390/cells12020305.
Pełny tekst źródłaLee, Wang Sik, Soohyun Lee, Taejoon Kang, Choong-Min Ryu, and Jinyoung Jeong. "Detection of Ampicillin-Resistant E. coli Using Novel Nanoprobe-Combined Fluorescence In Situ Hybridization." Nanomaterials 9, no. 5 (2019): 750. http://dx.doi.org/10.3390/nano9050750.
Pełny tekst źródłaLiu, Jiyin, Xiaochun Xie, Junna Lu, Yi He, Dan Shao, and Fangman Chen. "Self-Assembled Ru(II)-Coumarin Complexes for Selective Cell Membrane Imaging." Pharmaceutics 14, no. 11 (2022): 2284. http://dx.doi.org/10.3390/pharmaceutics14112284.
Pełny tekst źródłaFeng, Zhenzhen, Yanyun Ma, Bingjie Li, et al. "Mitochondria targeted self-assembled ratiometric fluorescent nanoprobes for pH imaging in living cells." Analytical Methods 11, no. 15 (2019): 2097–104. http://dx.doi.org/10.1039/c9ay00473d.
Pełny tekst źródłaZhu, Koujun, Rongguo Lu, Weifeng Qu, et al. "Novel Au–Se Nanoprobes for Specific Thrombin Detection in Diagnosis of Lung Cancer." Journal of Biomedical Nanotechnology 18, no. 4 (2022): 976–85. http://dx.doi.org/10.1166/jbn.2022.3302.
Pełny tekst źródłaSong, Lina, Shuai Ren, Yali Yue, Ying Tian, and Zhongqiu Wang. "A Gold Nanocage Probe Targeting Survivin for the Diagnosis of Pancreatic Cancer." Pharmaceutics 15, no. 5 (2023): 1547. http://dx.doi.org/10.3390/pharmaceutics15051547.
Pełny tekst źródłaJarosova, Romana, Sarah K. Woolfolk, Noraida Martinez-Rivera, et al. "Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes." Molecules 28, no. 5 (2023): 2260. http://dx.doi.org/10.3390/molecules28052260.
Pełny tekst źródłaDu, Xinfeng, Niping Li, Qinghan Chen, Zeying Wu, Jingying Zhai, and Xiaojiang Xie. "Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes." Biomicrofluidics 16, no. 3 (2022): 031301. http://dx.doi.org/10.1063/5.0090599.
Pełny tekst źródłaChen, Zhe, Zhuoyi Wang, Yihua Yuan, et al. "A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells." Molecules 28, no. 5 (2023): 2149. http://dx.doi.org/10.3390/molecules28052149.
Pełny tekst źródłaSokolov, Pavel, Galina Nifontova, Pavel Samokhvalov, Alexander Karaulov, Alyona Sukhanova, and Igor Nabiev. "Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer." Pharmaceutics 15, no. 3 (2023): 946. http://dx.doi.org/10.3390/pharmaceutics15030946.
Pełny tekst źródłaChen, Ying, Gege Yang, Shanshan Gao, et al. "Highly rapid and non-enzymatic detection of cholesterol based on carbon nitride quantum dots as fluorescent nanoprobes." RSC Advances 10, no. 65 (2020): 39596–600. http://dx.doi.org/10.1039/d0ra07495k.
Pełny tekst źródłaZhang, Mingkai, Yang Gao, Jialiang Wang, et al. "Identification on Mantle Cell Lymphoma Using CD20 and CD5 Coupled Upconversion Fluorescent Nanoprobes." Journal of Nanomaterials 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/3893761.
Pełny tekst źródłaShen, Cheng-Long, Guang-Song Zheng, Meng-Yuan Wu, et al. "Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose." Nanophotonics 9, no. 11 (2020): 3597–604. http://dx.doi.org/10.1515/nanoph-2020-0233.
Pełny tekst źródłaZhu, Yanli, Jikai Wang, Yiyang Sun, and Qingyun Cai. "A magneto-fluorescence bacteria assay strategy based on dual colour sulfide fluorescent nanoparticles with high near-IR conversion efficiency." Analyst 145, no. 13 (2020): 4436–41. http://dx.doi.org/10.1039/d0an00816h.
Pełny tekst źródłaHu, Yufeng, Jie Liu, Junyu Li, Tao Chen, and Minghuo Wu. "Dual-functional imprinted magnetic nanoprobes for fluorescence detection of N-nitrosodiphenylamine." Analytical Methods 10, no. 20 (2018): 2384–89. http://dx.doi.org/10.1039/c8ay00584b.
Pełny tekst źródłaHuang, Ming, Lijun Wang, Xiaojuan Zhang, et al. "Synthesis and Characterization of Folic Acid Labeled Upconversion Fluorescent Nanoprobes for in vitro Cancer Cells Targeted Imaging." Nano 12, no. 05 (2017): 1750057. http://dx.doi.org/10.1142/s1793292017500576.
Pełny tekst źródłaZhang, Ning, Yanmei Si, Zongzhao Sun, et al. "Lab-on-a-drop: biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues." Analyst 139, no. 18 (2014): 4620–28. http://dx.doi.org/10.1039/c4an00855c.
Pełny tekst źródłaSun, Lu, Shuping Xie, Xiuru Ji, et al. "MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging." Biomaterials Science 6, no. 10 (2018): 2619–26. http://dx.doi.org/10.1039/c8bm00593a.
Pełny tekst źródłaJin, Cheng, Ting Fu, Ruowen Wang, et al. "Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging." Chemical Science 8, no. 10 (2017): 7082–86. http://dx.doi.org/10.1039/c7sc02819a.
Pełny tekst źródłaWang, Min, Ke-yan Zheng, Shao-wu Lv, et al. "Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins." New Journal of Chemistry 42, no. 7 (2018): 4981–90. http://dx.doi.org/10.1039/c7nj04484d.
Pełny tekst źródłaDiao, Juanjuan, Tingting Wang, and Li Li. "Graphene quantum dots as nanoprobes for fluorescent detection of propofol in emulsions." Royal Society Open Science 6, no. 1 (2019): 181753. http://dx.doi.org/10.1098/rsos.181753.
Pełny tekst źródłaDunn, Bryce, Marzieh Hanafi, John Hummel, John R. Cressman, Rémi Veneziano, and Parag V. Chitnis. "NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes." Bioengineering 10, no. 8 (2023): 954. http://dx.doi.org/10.3390/bioengineering10080954.
Pełny tekst źródłaZhu, Huarui, Liang Gao, Xinglu Jiang, et al. "Positively charged graphene oxide nanoparticle: precisely label the plasma membrane of live cell and sensitively monitor extracellular pH in situ." Chem. Commun. 50, no. 28 (2014): 3695–98. http://dx.doi.org/10.1039/c3cc49325c.
Pełny tekst źródłaZhang, Yupu, Xinfeng Du, and Xiaojiang Xie. "Ionophore-Based Potassium Selective Fluorescent Organosilica Nano-Optodes Containing Covalently Attached Solvatochromic Dyes." Chemosensors 10, no. 1 (2022): 23. http://dx.doi.org/10.3390/chemosensors10010023.
Pełny tekst źródłaQi, Xiaoli, Hui Hu, Lina Liang та ін. "Fluorescence nanoprobes bearing low temperature-derived biochar nanoparticles as efficient quenchers for the detection of single-stranded DNA and 17β-estradiol and their analytical potential". RSC Advances 14, № 38 (2024): 28077–85. http://dx.doi.org/10.1039/d4ra03168g.
Pełny tekst źródłaWu, Hao, Haidong Zhao, Xiaojie Song, Shen Li, Xiaojun Ma, and Mingqian Tan. "Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging." J. Mater. Chem. B 2, no. 32 (2014): 5302–8. http://dx.doi.org/10.1039/c4tb00761a.
Pełny tekst źródłaChen, Yun, Jing Ye, Gang Lv, et al. "Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging." Biosensors 12, no. 2 (2022): 111. http://dx.doi.org/10.3390/bios12020111.
Pełny tekst źródłaPinkerton, Nathalie M., Céline Frongia, Valérie Lobjois, et al. "Red-emitting, EtTP-5-based organic nanoprobes for two-photon imaging in 3D multicellular biological models." RSC Advances 6, no. 70 (2016): 65770–74. http://dx.doi.org/10.1039/c6ra09954h.
Pełny tekst źródłaYanagi, Tamami, Kiichi Kaminaga, Wataru Kada, Osamu Hanaizumi, and Ryuji Igarashi. "Optimization of Wide-Field ODMR Measurements Using Fluorescent Nanodiamonds to Improve Temperature Determination Accuracy." Nanomaterials 10, no. 11 (2020): 2282. http://dx.doi.org/10.3390/nano10112282.
Pełny tekst źródłaKhalid, Asma, and Snjezana Tomljenovic-Hanic. "Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging." Molecules 29, no. 23 (2024): 5594. http://dx.doi.org/10.3390/molecules29235594.
Pełny tekst źródłaJeong, Sanghwa. "(Invited) Performance-Based Screening of NIR Fluorescent ssDNA-SWCNT Nanosensors and Biomedical Applications." ECS Meeting Abstracts MA2025-01, no. 11 (2025): 934. https://doi.org/10.1149/ma2025-0111934mtgabs.
Pełny tekst źródłaKarabacak, Soner, Alagappan Palaniappan, Tsang Siu Hon Tony, et al. "Gadolinium and Polythiophene Functionalized Polyurea Polymer Dots as Fluoro-Magnetic Nanoprobes." Nanomaterials 12, no. 4 (2022): 642. http://dx.doi.org/10.3390/nano12040642.
Pełny tekst źródłaCingolani, Matteo, Liviana Mummolo, Francesca Lugli, Mirko Zaffagnini, and Damiano Genovese. "Protein aggregation detection with fluorescent macromolecular and nanostructured probes: challenges and opportunities." New Journal of Chemistry 45, no. 32 (2021): 14259–68. http://dx.doi.org/10.1039/d1nj01606g.
Pełny tekst źródłaKlymchenko, Andrey. "BrightSens - Ultrabright Turn-on Fluorescent Organic Nanoparticles for Amplified Molecular Sensing in Living Cells - H2020." Impact 6 (August 1, 2017): 78–80. https://doi.org/10.5281/zenodo.5149840.
Pełny tekst źródłaMiss, Sejal P. Patil, Azam Z. Shaikh Mr., Akash S. Jain Mr., Divakar R. Patil Mr., Sameer R. Shaikh Mr., and S.P.Pawar Dr. "Review on Nanoprobe Device in Pharmaceutical." Journal of Advances in Clinical Pharmacology 1, no. 2 (2023): 21–31. https://doi.org/10.5281/zenodo.8375534.
Pełny tekst źródłaChen, Junyu, Songsong Luo, Dazhuang Xu, et al. "Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host–guest interaction." RSC Advances 6, no. 60 (2016): 54812–19. http://dx.doi.org/10.1039/c6ra08677b.
Pełny tekst źródłaChen, Mian, Xiaoxiao He, Kemin Wang, Dinggeng He, Xiaohai Yang, and Hui Shi. "Inorganic fluorescent nanoprobes for cellular and subcellular imaging." TrAC Trends in Analytical Chemistry 58 (June 2014): 120–29. http://dx.doi.org/10.1016/j.trac.2014.03.003.
Pełny tekst źródłaLong, Shuangshuang, Qinglong Qiao, Fei Deng, Lu Miao, Juyoung Yoon, and Zhaochao Xu. "Self-assembling nanoprobes that display two-dimensional fluorescent signals for identification of surfactants and bacteria." Chemical Communications 55, no. 7 (2019): 969–72. http://dx.doi.org/10.1039/c8cc09544b.
Pełny tekst źródłaPayne, Christine K. "Fluorescent Dendritic Nanoprobes: A New Class of Fluorescent Probes for Biological Applications." Biophysical Journal 104, no. 7 (2013): 1394. http://dx.doi.org/10.1016/j.bpj.2013.01.053.
Pełny tekst źródłaLettieri, Stefania, Marta d’Amora, Adalberto Camisasca, Alberto Diaspro, and Silvia Giordani. "Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics." Beilstein Journal of Nanotechnology 8 (September 7, 2017): 1878–88. http://dx.doi.org/10.3762/bjnano.8.188.
Pełny tekst źródłaGao, Yan, Li Han, Jing Jing Liu, Xing Gao, and Wen He. "The Research Progress of Fluorescent Probes for Detection of Selenols." Key Engineering Materials 861 (September 2020): 315–19. http://dx.doi.org/10.4028/www.scientific.net/kem.861.315.
Pełny tekst źródłaKumar, Sushil, Ganga Ram Chaudhary, Savita Chaudhary, and Ahmad Umar. "3-Mercaptopropyl Trimethoxysilane @ Gadolinium Oxide Nanoprobes: An Effective Fluorescence-Sensing Platform for Cysteine." Coatings 12, no. 11 (2022): 1636. http://dx.doi.org/10.3390/coatings12111636.
Pełny tekst źródłaYu, Haijun, Chao Chen, Xiaodan Cao, Yueling Liu, Shengmin Zhou, and Ping Wang. "Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins." Analytical and Bioanalytical Chemistry 409, no. 21 (2017): 5073–80. http://dx.doi.org/10.1007/s00216-017-0453-0.
Pełny tekst źródłaLou, Doudou, Lin Fan, Yongxin Ji, Ning Gu, and Yu Zhang. "A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I." Analytical Methods 11, no. 28 (2019): 3506–13. http://dx.doi.org/10.1039/c9ay01039d.
Pełny tekst źródłaSun, Qiang, Jun Yao, Shuxun Wei, Xinxing Li, and Weijun Wang. "The Value of Near-Infrared Multifunctional Nanoprobe Combined with Artificial Intelligence Microsensor Technology in Molecular Diagnosis for Gastric Cancer." Journal of Biomedical Nanotechnology 20, no. 2 (2024): 351–58. http://dx.doi.org/10.1166/jbn.2024.3769.
Pełny tekst źródła