Gotowa bibliografia na temat „Flutter Prediction”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flutter Prediction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Flutter Prediction"

1

Perrocheau, Mathilde. "Flutter Prediction in Transonic Regime." Thesis, KTH, Flygdynamik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234840.

Pełny tekst źródła
Streszczenie:
The flutter is a dangerous aeroelastic instability that can cause dramatic failures. It is important to evaluate in which conditions it can occur to ensure the safety of the pilots and the passengers. As flight tests are very expensive and hazardous, the need for efficient and trustworthy numerical tools becomes essential. This report focuses on two methods to predict the flutter conditions in the transonic domain. To evaluate the accuracy of these tools, their results are compared to experimental data gathered during a wind-tunnel test. The influence of the Mach number and the angle of attack
Style APA, Harvard, Vancouver, ISO itp.
2

Turevskiy, Arkadiy 1974. "Flutter boundary prediction using experimental data." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yildiz, Erdinc Nuri. "Aeroelastic Stability Prediction Using Flutter Flight Test Data." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608623/index.pdf.

Pełny tekst źródła
Streszczenie:
Flutter analyses and tests are the major items in flight certification efforts required when a new air vehicle is developed or when a new external store is developed for an existing aircraft. The flight envelope of a new aircraft as well as the influence of aircraft modifications on an existing flight envelope can be safely determined only by flutter tests. In such tests, the aircraft is instrumented by accelerometers and exciters. Vibrations of the aircraft at specific dynamic pressures are measured and transmitted to a ground station via telemetry systems during flutter tests. These vibratio
Style APA, Harvard, Vancouver, ISO itp.
4

Shieh, Teng-Hua. "Prediction and analysis of wing flutter at transonic speeds." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185694.

Pełny tekst źródła
Streszczenie:
This dissertation deals with the instability, known as flutter, of the lifting and control surfaces of aircraft of advanced design at high altitudes and speeds. A simple model is used to represent the aerodynamics for flutter analysis of a two-degree-of-freedom airfoil system. Flutter solutions of this airfoil system are shown to be algebraically homomorphic in that solutions about different elastic axes can be found by mapping them to those about the mid-chord. Algebraic expressions for the flutter speed and frequency are thus obtained. For the prediction of flutter of a wing at transonic spe
Style APA, Harvard, Vancouver, ISO itp.
5

Sun, Tianrui. "Improved Flutter Prediction for Turbomachinery Blades with Tip Clearance Flows." Licentiate thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233770.

Pełny tekst źródła
Streszczenie:
Recent design trends in steam turbines strive for high aerodynamic loading and high aspect ratio to meet the demand of higher efficiency. These design trends together with the low structural frequency in last stage steam turbines increase the susceptibility of the turbine blades to flutter. Flutter is the self-excited and self-sustained aeroelastic instability phenomenon, which can result in rapid growth of blade vibration amplitude and eventually blade failure in a short period of time unless adequately damped. To prevent the occurrences of flutter before the operation of new steam turbines,
Style APA, Harvard, Vancouver, ISO itp.
6

Opgenoord, Max Maria Jacques. "Transonic flutter prediction and aeroelastic tailoring for next-generation transport aircraft." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120380.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 121-141) and index.<br>Novel commercial transport aircraft concepts feature large wing spans to increase their fuel efficiency; these wings are more flexible, leading to more potential aeroelastic problems. Furthermore, these aircraft fly i
Style APA, Harvard, Vancouver, ISO itp.
7

Erives, Anchondo Ruben. "Validation of non-linear time marching and time-linearised CFD solvers used for flutter prediction." Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175542.

Pełny tekst źródła
Streszczenie:
The turbomachinery related industry relies heavily on numerical tools for the design and development of modern turbomachines. In order to be competitive turbomachines ought to be highly efficient and robust. This has lead engineers to develop more aggressive designs, which often leads to lower margins of structural reliability.  One of the strongest threats to turbomachines are high cycle fatigue problems which arise from aeroelastic phenomena such as flutter. According to Kielb R. (2013) many of such problems are detected at developing testing stage. This implies that the prediction capabilit
Style APA, Harvard, Vancouver, ISO itp.
8

Delamore-Sutcliffe, David William. "Modelling of unsteady stall aerodynamics and prediction of stall flutter boundaries for wings and propellers." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kassem, H. I. "Flutter prediction of metallic and composite wings using coupled DSM-CFD models in transonic flow." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/20404/.

Pełny tekst źródła
Streszczenie:
Although flutter analysis is a relatively old problem in aviation, it is still challenging, particularly with the advent of composite materials and requirements for high-speed light airframes. The main challenge for this problem is at the transonic flow region. The transonic flow, being non-linear, poses a great challenge over traditional linear theories which fail to predict the aerodynamic properties accurately. Aerospace has been one of the primary areas of applications to take advantage of composite materials with the aim to reduce the total mass and improve control effectiveness. This wor
Style APA, Harvard, Vancouver, ISO itp.
10

Perry, Brendan. "Predictions of flutter at transonic speeds." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!