Gotowa bibliografia na temat „Flying wing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flying wing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Flying wing"

1

Yamamoto, Tatsuya, Ryusuke Noda, Hao Liu, and Toshiyuki Nakata. "Gliding Performance of an Insect-Inspired Flapping-Wing Robot." Journal of Robotics and Mechatronics 36, no. 5 (2024): 1134–42. http://dx.doi.org/10.20965/jrm.2024.p1134.

Pełny tekst źródła
Streszczenie:
Flying animals such as insects and birds use wing flapping for flight, occasionally pausing wing motion and transitioning into gliding to conserve energy for propulsion and achieve high flying efficiency. In this study, we have investigated the gliding performance of a gliding model based on a flapping-wing robot developed in a previous study, with the aim of developing a highly efficient flying robot that utilizes bio-inspired intermittent flight. Wind tunnel experiments with a gliding model have shown that the attitude of the wings has a strong influence on gliding performance and that a tai
Style APA, Harvard, Vancouver, ISO itp.
2

Niu, Zhong-Guo, Xiang-Hui Xu, Jian-Feng Wang, Jia-Li Jiang, and Hua Liang. "Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control." Acta Physica Sinica 71, no. 2 (2022): 024702. http://dx.doi.org/10.7498/aps.71.20211425.

Pełny tekst źródła
Streszczenie:
Horizontal tail is eliminated from the flying wing layout for improving the low observable and aerodynamic efficiency, resulting in degrading longitudinal maneuverability and fight stability. The low speed wind tunnel test study of improving the longitudinal aerodynamic characteristics of large aspect ratio flying wing model is carried out by using plasma flow control technology. The flying wing model has a leading-edge sweep angle of 34.5° and an aspect ratio of 5.79. The reasons for deteriorating the static maneuverability and stability of the flying wing model and the mechanism of plasma co
Style APA, Harvard, Vancouver, ISO itp.
3

Ortega Ancel, Alejandro, Rodney Eastwood, Daniel Vogt, et al. "Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots." Interface Focus 7, no. 1 (2017): 20160087. http://dx.doi.org/10.1098/rsfs.2016.0087.

Pełny tekst źródła
Streszczenie:
Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s −1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We di
Style APA, Harvard, Vancouver, ISO itp.
4

Cahyadi, Danang Dwi, Supratikno, Yasmin Nadhiva Narindria, et al. "From skin folds to flight: elastic and collagen fibers architecture in the wing of the large flying fox (Pteropus vampyrus)." ARSHI Veterinary Letters 8, no. 4 (2024): 97–98. https://doi.org/10.29244/avl.8.4.97-98.

Pełny tekst źródła
Streszczenie:
Flight in bats is the primary mode of locomotion as they are the only flying mammals. The morphological characteristics of the wing membrane have been suggested to play an important role in its flight ability. The present study analysed the functional morphology of the wing membrane of the large flying fox (Pteropus vampyrus), focusing on the organisation of elastic and collagen fibres. In this study, we used two wild-caught adult flying foxes from West Java, Indonesia. The wing membrane tissue sections were stained using haematoxylin-eosin, Masson’s trichrome, and Verhoeff-Van Gieson staining
Style APA, Harvard, Vancouver, ISO itp.
5

Elenin, D. V. "CREATION OF AN EXPERIMENTAL CONTROL BODY (ELEVON) IN THE «FLYING WING» AERODYNAMIC SCHEME." System analysis and logistics 2, no. 28 (2021): 26–32. http://dx.doi.org/10.31799/2077-5687-2021-2-26-32.

Pełny tekst źródła
Streszczenie:
The article discusses the possibility of creating two schemes of an experimental control body in flight for a UAV of the "Flying Wing" scheme. The concept of creating a real prototype for an experiment in the Solidworks Flow environment and in a wind tunnel with a low incoming flow velocity is presented. Key words: wing, aerodynamic design, UAV, flying wing.
Style APA, Harvard, Vancouver, ISO itp.
6

Duda, Dominik Felix, Hendrik Fuest, Tobias Islam, and Dieter Moormann. "Flight guidance concept for the launching and landing phase of a flying wing used in an airborne wind energy system." Wind Energy Science 10, no. 4 (2025): 661–78. https://doi.org/10.5194/wes-10-661-2025.

Pełny tekst źródła
Streszczenie:
Abstract. Airborne wind energy (AWE) is an emerging technology that harvests energy by utilizing tethered airborne systems in wind fields. Given their favorable aerodynamic characteristics, employing flying wings as airborne systems holds considerable promise for system performance. Moreover, when designed as motorized tail sitters, they can provide vertical takeoff and landing capabilities. However, the processes of launching and landing present considerable challenges for these specialized flying wing airborne wind energy systems (AWESs). It is essential to consider the controllability at va
Style APA, Harvard, Vancouver, ISO itp.
7

PRISACARIU, Vasile. "UAV FLYING WING WITH A PHOTOVOLTAIC SYSTEM." Review of the Air Force Academy 17, no. 1 (2019): 63–70. http://dx.doi.org/10.19062/1842-9238.2019.17.1.8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

PEPELEA, Dumitru, Marius-Gabriel COJOCARU, Adrian TOADER, and Mihai-Leonida NICULESCU. "CFD ANALYSIS FOR UAV OF FLYING WING." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (2016): 171–76. http://dx.doi.org/10.19062/2247-3173.2016.18.1.22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Davenport, John. "Wing-loading, stability and morphometric relationships in flying fish (Exocoetidae) from the North-eastern Atlantic." Journal of the Marine Biological Association of the United Kingdom 72, no. 1 (1992): 25–39. http://dx.doi.org/10.1017/s0025315400048761.

Pełny tekst źródła
Streszczenie:
‘Four-winged’ flying fish (in which both pectoral and pelvic fins are hypertrophied) reach greater maximum sizes than ‘two-winged’ forms in which only the pectoral fins are enlarged. Exocoetus obtusirostris shows negatively allometric growth in relation to standard length in terms of body mass (b=2·981), and lateral fin area (b=1·834). In consequence, wing-loading rises in positive allometric fashion with standard length (b=l·236). Pectoral fin length cannot be greater than 78–79% of standard length or swimming will be impaired, so the requirement for increased flying speed resulting from incr
Style APA, Harvard, Vancouver, ISO itp.
10

Shyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.

Pełny tekst źródła
Streszczenie:
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system cons
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Flying wing"

1

Farrell, Joseph H. "DYNAMICALLY SCALED OBLIQUE FLYING WING." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Huang, Haidong. "Optimal design of a flying-wing aircraft inner wing structure configuration." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7439.

Pełny tekst źródła
Streszczenie:
Flying-wing aircraft are considered to have great advantages and potentials in aerodynamic performance and weight saving. However, they also have many challenges in design. One of the biggest challenges is the structural design of the inner wing (fuselage). Unlike the conventional fuselage of a tube configuration, the flying-wing aircraft inner wing cross section is limited to a noncircular shape, which is not structurally efficient to resist the internal pressure load. In order to solve this problem, a number of configurations have been proposed by other designers such as Multi Bubble Fuselag
Style APA, Harvard, Vancouver, ISO itp.
3

Saeed, Tariq Issam. "Conceptual design for a laminar-flying-wing aircraft." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243926.

Pełny tekst źródła
Streszczenie:
The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. In addition to boundary layer laminarisation (utilising distributed suction) and limited sweep, a standing-height passenger cabin and subcritical aerofoil flow are imposed as requirements. Subject to these constraints, this research aims to: provide insight into the parameters
Style APA, Harvard, Vancouver, ISO itp.
4

Levis, Errikos. "Design synthesis of advanced technology, flying wing seaplanes." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9943.

Pełny tekst źródła
Streszczenie:
Over the past decades there has been increasing pressure for ever more efficient and environmentally friendly aircraft to be designed. The use of waterborne aircraft could be a means of satisfying those requirements in the future. The aim of the PhD research program presented in this thesis was to develop the methodologies necessary for the preliminary design of large passenger seaplanes and evaluate the performance of such an aircraft compared to the current state of the art. The major technological and operational constraints in designing large waterborne aircraft were identified through an
Style APA, Harvard, Vancouver, ISO itp.
5

Aguirre, John. "Study of 3-Dimensional Co-Flow Jet Airplane and High-Rise Building Flow Using CFD Simulation." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/181.

Pełny tekst źródła
Streszczenie:
The purpose of this thesis is to design and study an aircraft which implements the Co-Flow Jet (CFJ) airfoil concept, as well as to study the CAARC standard highrise building. The design concept is verified mainly by the use of a Computational Fluid Dynamics (CFD) package. A thorough methodology for geometry and mesh generation is developed, and subsequently applied to the two cases. The first case studied is that of the CFJ Airplane (CFJA). It consists of a threedimensional, highly blended, ying wing geometry implementing the Co-Flow Jet airfoil concept. Though a thorough comparison to a bas
Style APA, Harvard, Vancouver, ISO itp.
6

Zhu, Yan. "Longitudinal control laws design for a flying wing aircraft." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7423.

Pełny tekst źródła
Streszczenie:
This research is concerned with the flight dynamic, pitch flight control and flying qualities assessment for the reference BWB aircraft. It aims to develop the longitudinal control laws which could satisfy the flying and handing qualities over the whole flight envelope with added consideration of centre of gravity (CG) variation. In order to achieve this goal, both the longitudinal stability augmentation system (SAS) and autopilot control laws are studied in this thesis. Using the pole placement method, two sets of local Linear-Time-Invariant (LTI) SAS controllers are designed from the viewpoi
Style APA, Harvard, Vancouver, ISO itp.
7

Iglesias, Sergio. "Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35718.

Pełny tekst źródła
Streszczenie:
The classic minimum induced drag spanload is not necessarily the best choice for an aircraft. For a single aircraft configuration, variations from the elliptic, minimum drag optimum load distribution can produce wing weight savings that result in airplane performance benefits. For a group of aircraft flying in formation, non-elliptic lift distributions can give high induced drag reductions both for the formation and for each airplane. <p> For single aircraft, a discrete vortex method which performs the calculations in the Trefftz plane has been used to calculate optimum spanloads for non-copl
Style APA, Harvard, Vancouver, ISO itp.
8

Geyman, Matthew Kenneth. "Wing/Wall Aerodynamic Interactions in Free Flying, Maneuvering MAVs." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335113432.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cheng, Yun. "Preliminary fuselage structural configuration of a flying-wing type airline." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7419.

Pełny tekst źródła
Streszczenie:
The flying-wing is a type of configuration which is a tailless airplane accommodating all of its parts within the outline of a single airfoil. Theoretically, it has the most aerodynamic efficiency. The fuel consumption can be more efficient than the existed conventional airliner. It seems that this configuration can achieve the above mentioned requirements. According to these outstanding advantages, many aircraft companies did a great deal of projects on the flying-wing concept. However, the application was only for sport and military use; for airliner, none of them entered production. FW-11 i
Style APA, Harvard, Vancouver, ISO itp.
10

Tonti, Jacopo. "Development of a Flight Dynamics Modelof a Flying Wing Configuration." Thesis, KTH, Aerodynamik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159873.

Pełny tekst źródła
Streszczenie:
The subject of UCAV design is an important topic nowadays and many countries have their own programmes. An international group, under the initiative of the NATO RTO AVT-201 Task group, titled “Extended Assessment of Reliable Stability &amp; Control Prediction Methods for NATO Air Vehicles”, is currently performing intensive analysis on a generic UCAV configuration, named SACCON. In this thesis the stability and control characteristics of the SACCON are investigated, with the purpose of carrying out a comprehensive assessment of the flying qualities of the design. The study included the generat
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Flying wing"

1

Robert, Reese. Flying with one wing. Blue Pacific Press, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

David, Hands, ed. Flying wing: An autobiography. Stanley Paul, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jong, Erica. Fear of flying. Penguin Books, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pears, Catherine Townsley. Flying with one wing: Memories of life in York Township. Pro Familia Pub., 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Copyright Paperback Collection (Library of Congress), ed. Fear of flying. New Signet, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

(Translator), David Johnston, ed. The Horten Flying Wing in World War II: The History & Development of the Ho 229 (Schiffer Military History, Vol 47). Schiffer Publishing, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Coleman, Ted. Jack Northrop and the Flying Wing: The story behind the Stealth bomber. Paragon House, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Center, Ames Research, ed. The conceptual design of a Mach 2 oblique flying wing supersonic transport. National Aeronautics and Space Administration, Ames Research Center, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jong, Erica. Fear of flying: A novel. Minerva, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Erica, Jong. Fear of flying: A novel. Mandarin, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Flying wing"

1

Seebass, A. R. "Oblique Flying Wing Studies." In New Design Concepts for High Speed Air Transport. Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Velden, A. "The Oblique Flying Wing Transport." In New Design Concepts for High Speed Air Transport. Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sissingh, G. "Flying Qualities." In Göttinger Monograph N: German Research and Development on Rotary-Wing Aircraft (1939–1945). American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624102738.0135.0174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Nonami, Kenzo, Farid Kendoul, Satoshi Suzuki, Wei Wang, and Daisuke Nakazawa. "Development of Autonomous Quad-Tilt-Wing (QTW) Unmanned Aerial Vehicle: Design, Modeling, and Control." In Autonomous Flying Robots. Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-53856-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sobieczky, H., P. Li, and R. Seebass. "Transonic Methods for Oblique Flying Wing SST." In IUTAM Symposium Transsonicum IV. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0017-8_49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Jihai, Yingsong Gu, Ke Xie, and Pengtao Shi. "Flutter Modeling, Analysis and Test for Blended-Wing-Body Flying Wing." In Lecture Notes in Electrical Engineering. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_78.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mardanpour, Pezhman, and Dewey H. Hodges. "Passive Morphing of Solar Powered Flying Wing Aircraft." In Fluid-Structure-Sound Interactions and Control. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_50.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Strüber, H., and M. Hepperle. "Aerodynamic Optimisation of a Flying Wing Transport Aircraft." In New Results in Numerical and Experimental Fluid Mechanics V. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33287-9_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fan, Lu, Yubiao Jiang, Fei Cen, and Zhenyun Guo Bowen Nie. "Flight Dynamics Analysis for the Flying-Wing Configuration Aircraft." In Lecture Notes in Electrical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

He, Zhenya, Haolun Yuan, and Xianmin Zhang. "Design and Analysis of Bionic Flapping-Wing Flying Robot Based on Two-Stage Wing." In Advances in Mechanism, Machine Science and Engineering in China. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9398-5_55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Flying wing"

1

Nandanwar, Prajakta P., Anghan Prit Parashotambhai, Hari Om Verma, and Syed Alay Hashim. "Attitude Controller Design for a Flying Wing UAV." In 2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM). IEEE, 2025. https://doi.org/10.1109/setcom64758.2025.10932555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Li, Pei, Richard Seebass, and Helmut Sobieczky. "Oblique flying wing aerodynamics." In Theroretical Fluid Mechanics Conference. American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kharkov, Vitaliy P., Oleg A. Ovodkov, Olga S. Khalyutina, Albert O. Davidov, and Aleksey V. Altukhov. "Electric Flying Wing Design." In 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE, 2021. http://dx.doi.org/10.1109/edm52169.2021.9507700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Crenshaw, Kent, Bill Flanagan, Kent Crenshaw, and Bill Flanagan. "Testing the flying wing." In 33rd Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3262.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aihaitijiang, A., and Cagdas D. Onal. "Development and Experimental Evaluation of a Quad-Tilt-Wing Flying Robot Platform." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98500.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we present the mechanical design and control system of a new indoor and outdoor Quad-Tilt-Wing flying robot. The proposed flying robot can achieve vertical takeoff, hovering, and long duration horizontal high-speed flight. All of these flight modes can be achieved by simply changing the angle of the rotors and wings by a tilt mechanism. We present the details on design and prototyping, the attitude control system, and experimental results, including wind-tunnel experiments, full flight tests, and performance tests. The experimental results show that our Quad-Tilt-Wing f
Style APA, Harvard, Vancouver, ISO itp.
6

Zhang, Liang, Xiuyu He, Haisheng Song, Guang Li, and Wei He. "Wing Analysis of Bionic Flapping-Wing Flying Robots." In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10393895.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ma, Chao, and Lixin Wang. "Flying-Wing Aircraft Control Allocation." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rustagi, Vishvendra, Mangal Kothari, and Anindya Chatterjee. "Gyroscopic Stabilization of Flying Wing Aircraft." In 2018 AIAA Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0530.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wartojo, Bintang Samodro, and Mohammad Adhitya. "Folded wing mechanism for flying car." In RECENT PROGRESS ON: MECHANICAL, INFRASTRUCTURE AND INDUSTRIAL ENGINEERING: Proceedings of International Symposium on Advances in Mechanical Engineering (ISAME): Quality in Research 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Torenbeek, E. "Aerodynamic Performance of Wing-Body Configurations and the Flying Wing." In General, Corporate & Regional Aviation Meeting & Exposition. SAE International, 1991. http://dx.doi.org/10.4271/911019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Flying wing"

1

Roy, Arnab, and Anup Ghosh. Aerodynamic Investigation of Smart Flying Wing MAV. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada532004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Roy, Arnab. Aerodynamic Investigation of Smart Flying Wing MAV. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada511003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Brodsky, Peter, and Jim Luby. Flight Software Development for the Liberdade Flying Wing Glider. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada602311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Staab, Janet E., Margaret A. Kolka, and Bruce S. Cadarette. Metabolic Rate and Heat Stress Associated With Flying Military Rotary-Wing Aircraft. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada345641.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Miller, Dorothy, John Wallin, and R. C. Wooten. Environmental Assessment Use of Golden Triangle Regional Airport by 14th Flying Training Wing Aircraft. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada609295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

D'Spain, Gerald L. Flying Wing Autonomous Underwater Glider for Basic Research in Ocean Acoustics, Signal/Array Processing, Underwater Autonomous Vehicle Technology, Oceanography, Geophysics, and Marine Biological Studies. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada496168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Torvik, Peter J. On the Maximum Range of Flying Wings. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada229487.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Larkin, Ronald. Are flying wildlife attracted to (or do they avoid) wind turbines? Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1227698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!