Artykuły w czasopismach na temat „Flying wing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flying wing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yamamoto, Tatsuya, Ryusuke Noda, Hao Liu, and Toshiyuki Nakata. "Gliding Performance of an Insect-Inspired Flapping-Wing Robot." Journal of Robotics and Mechatronics 36, no. 5 (2024): 1134–42. http://dx.doi.org/10.20965/jrm.2024.p1134.
Pełny tekst źródłaNiu, Zhong-Guo, Xiang-Hui Xu, Jian-Feng Wang, Jia-Li Jiang, and Hua Liang. "Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control." Acta Physica Sinica 71, no. 2 (2022): 024702. http://dx.doi.org/10.7498/aps.71.20211425.
Pełny tekst źródłaOrtega Ancel, Alejandro, Rodney Eastwood, Daniel Vogt, et al. "Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots." Interface Focus 7, no. 1 (2017): 20160087. http://dx.doi.org/10.1098/rsfs.2016.0087.
Pełny tekst źródłaCahyadi, Danang Dwi, Supratikno, Yasmin Nadhiva Narindria, et al. "From skin folds to flight: elastic and collagen fibers architecture in the wing of the large flying fox (Pteropus vampyrus)." ARSHI Veterinary Letters 8, no. 4 (2024): 97–98. https://doi.org/10.29244/avl.8.4.97-98.
Pełny tekst źródłaElenin, D. V. "CREATION OF AN EXPERIMENTAL CONTROL BODY (ELEVON) IN THE «FLYING WING» AERODYNAMIC SCHEME." System analysis and logistics 2, no. 28 (2021): 26–32. http://dx.doi.org/10.31799/2077-5687-2021-2-26-32.
Pełny tekst źródłaDuda, Dominik Felix, Hendrik Fuest, Tobias Islam, and Dieter Moormann. "Flight guidance concept for the launching and landing phase of a flying wing used in an airborne wind energy system." Wind Energy Science 10, no. 4 (2025): 661–78. https://doi.org/10.5194/wes-10-661-2025.
Pełny tekst źródłaPRISACARIU, Vasile. "UAV FLYING WING WITH A PHOTOVOLTAIC SYSTEM." Review of the Air Force Academy 17, no. 1 (2019): 63–70. http://dx.doi.org/10.19062/1842-9238.2019.17.1.8.
Pełny tekst źródłaPEPELEA, Dumitru, Marius-Gabriel COJOCARU, Adrian TOADER, and Mihai-Leonida NICULESCU. "CFD ANALYSIS FOR UAV OF FLYING WING." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (2016): 171–76. http://dx.doi.org/10.19062/2247-3173.2016.18.1.22.
Pełny tekst źródłaDavenport, John. "Wing-loading, stability and morphometric relationships in flying fish (Exocoetidae) from the North-eastern Atlantic." Journal of the Marine Biological Association of the United Kingdom 72, no. 1 (1992): 25–39. http://dx.doi.org/10.1017/s0025315400048761.
Pełny tekst źródłaShyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.
Pełny tekst źródłaHong, Wei Jiang, and Dong Li Ma. "Influence of Control Coupling Effect on Landing Performance of Flying Wing Aircraft." Applied Mechanics and Materials 829 (March 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/amm.829.110.
Pełny tekst źródłaHou, Yu, and Fang Wang. "CPG-Based Movement Control for Bionic Flapping-Wing Mechanism." Applied Mechanics and Materials 226-228 (November 2012): 844–49. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.844.
Pełny tekst źródłaXie, Liang, Han, et al. "Experimental Study on Plasma Flow Control of Symmetric Flying Wing Based on Two Kinds of Scaling Models." Symmetry 11, no. 10 (2019): 1261. http://dx.doi.org/10.3390/sym11101261.
Pełny tekst źródłaXin, Hua, Zhang Ji, and Ming Lei. "The Bionic Wing with Winglet in Near Space Aerodynamic Analysis." Applied Mechanics and Materials 644-650 (September 2014): 1939–42. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.1939.
Pełny tekst źródłaRistroph, Leif, and Stephen Childress. "Stable hovering of a jellyfish-like flying machine." Journal of The Royal Society Interface 11, no. 92 (2014): 20130992. http://dx.doi.org/10.1098/rsif.2013.0992.
Pełny tekst źródłaYang, Xu, Xiao Yi Jin, and Xiao Lei Zhou. "Bionic Flapping Wing Flying Robot Flight Mechanism and the Key Technologies." Applied Mechanics and Materials 494-495 (February 2014): 1046–49. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1046.
Pełny tekst źródłaO’Callaghan, Felicity, Amir Sarig, Gal Ribak, and Fritz-Olaf Lehmann. "Efficiency and Aerodynamic Performance of Bristled Insect Wings Depending on Reynolds Number in Flapping Flight." Fluids 7, no. 2 (2022): 75. http://dx.doi.org/10.3390/fluids7020075.
Pełny tekst źródłaMcCracken, Gary F., Kamran Safi, Thomas H. Kunz, Dina K. N. Dechmann, Sharon M. Swartz, and Martin Wikelski. "Airplane tracking documents the fastest flight speeds recorded for bats." Royal Society Open Science 3, no. 11 (2016): 160398. http://dx.doi.org/10.1098/rsos.160398.
Pełny tekst źródłaMcCracken, Gary F., Kamran Safi, Thomas H. Kunz, Dina K. N. Dechmann, Sharon M. Swartz, and Martin Wikelski. "Airplane tracking documents the fastest flight speeds recorded for bats." Royal Society Open Science 3, no. 11 (2016): 160398. https://doi.org/10.5281/zenodo.14814951.
Pełny tekst źródłaMeresman, Yonatan, and Gal Ribak. "Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers (Protaetia cuprea)." Journal of Experimental Biology 223, no. 24 (2020): jeb225599. http://dx.doi.org/10.1242/jeb.225599.
Pełny tekst źródłaSackey, J., B. T. Sone, K. A. Dompreh, and M. Maaza. "Wettability Property In Natural Systems: A Case of Flying Insects." MRS Advances 3, no. 42-43 (2018): 2697–703. http://dx.doi.org/10.1557/adv.2018.367.
Pełny tekst źródłaStarr, Christopher K., Robert S. Jacobson, Joan W. Krispyn, and Joshua A. Spiers. "Caste and wing loading in a social wasp (Hymenoptera, Vespidae, Dolichovespula maculata)." Journal of Hymenoptera Research 84 (August 24, 2021): 381–90. http://dx.doi.org/10.3897/jhr.84.68800.
Pełny tekst źródłaStarr, Christopher K., Robert S. Jacobson, Joan W. Krispyn, and Joshua A. Spiers. "Caste and wing loading in a social wasp (Hymenoptera, Vespidae, Dolichovespula maculata)." Journal of Hymenoptera Research 84 (August 24, 2021): 381–90. https://doi.org/10.3897/jhr.84.68800.
Pełny tekst źródłaJohansson, L. C., and P. Henningsson. "Butterflies fly using efficient propulsive clap mechanism owing to flexible wings." Journal of The Royal Society Interface 18, no. 174 (2021): 20200854. http://dx.doi.org/10.1098/rsif.2020.0854.
Pełny tekst źródłaZhang, Wei, Lin Zhou, Ke Zhao, Ruibin Zhang, Zhenghong Gao, and Bowen Shu. "Airfoil Design Optimization of Blended Wing Body for Various Aerodynamic and Stealth Stations." Aerospace 11, no. 7 (2024): 586. http://dx.doi.org/10.3390/aerospace11070586.
Pełny tekst źródłaLiu, Guangze, Song Wang, and Wenfu Xu. "Flying State Sensing and Estimation Method of Large-Scale Bionic Flapping Wing Flying Robot." Actuators 11, no. 8 (2022): 213. http://dx.doi.org/10.3390/act11080213.
Pełny tekst źródłaОлег Львович Лемко and Євген О. Кушніренко. "AERO DYNAMIC SHAPE OF TRANSPORT AIRCRAFT “FLYING WING” SCHEME WITH HIGH ASPECT RATIO." MECHANICS OF GYROSCOPIC SYSTEMS, no. 27 (October 6, 2014): 84–92. http://dx.doi.org/10.20535/0203-377127201438043.
Pełny tekst źródłaKeidel, Dominic, Giulio Molinari, and Paolo Ermanni. "Aero-structural optimization and analysis of a camber-morphing flying wing: Structural and wind tunnel testing." Journal of Intelligent Material Systems and Structures 30, no. 6 (2019): 908–23. http://dx.doi.org/10.1177/1045389x19828501.
Pełny tekst źródłaHenningsson, P., F. T. Muijres, and A. Hedenström. "Time-resolved vortex wake of a common swift flying over a range of flight speeds." Journal of The Royal Society Interface 8, no. 59 (2010): 807–16. http://dx.doi.org/10.1098/rsif.2010.0533.
Pełny tekst źródłaLiu, Yun, Zhi Sheng Jing, Shan Chao Tu, Ming Hao Yu, and Guo Wei Qin. "Character Measurement of Flapping-Wing Mechanism." Applied Mechanics and Materials 48-49 (February 2011): 300–303. http://dx.doi.org/10.4028/www.scientific.net/amm.48-49.300.
Pełny tekst źródłaZhang, Haiming, and Zhenzhong Liu. "Design and Research on Flapping Mechanism of Biomimetic Albatross." Journal of Physics: Conference Series 2343, no. 1 (2022): 012006. http://dx.doi.org/10.1088/1742-6596/2343/1/012006.
Pełny tekst źródłaShi, Wei, Yanjun Tao, Shaoze Lu, and Mingxu Yi. "Research on quantum radar stealth optimization design of flying wing aircraft." Journal of Physics: Conference Series 3026, no. 1 (2025): 012037. https://doi.org/10.1088/1742-6596/3026/1/012037.
Pełny tekst źródłaJiao, Jing Shan, Xin Hua, and Zhang Ji. "Analysis of the Bionic Wing's Aerodynamic Performance." Applied Mechanics and Materials 644-650 (September 2014): 385–89. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.385.
Pełny tekst źródłaBourdin, P., A. Gatto, and M. I. Friswell. "Performing co-ordinated turns with articulated wing-tips as multi-axis control effectors." Aeronautical Journal 114, no. 1151 (2010): 35–47. http://dx.doi.org/10.1017/s0001924000003511.
Pełny tekst źródłaShevell, Richard S. "Feasibility of the "Flying Wing"." Science 245, no. 4924 (1989): 1311–12. http://dx.doi.org/10.1126/science.245.4924.1311.d.
Pełny tekst źródłaShevell, R. S. "Feasibility of the "Flying Wing"." Science 245, no. 4924 (1989): 1311–12. http://dx.doi.org/10.1126/science.245.4924.1311-c.
Pełny tekst źródłaBolsunovsky, A. L., N. P. Buzoverya, B. I. Gurevich, et al. "Flying wing—problems and decisions." Aircraft Design 4, no. 4 (2001): 193–219. http://dx.doi.org/10.1016/s1369-8869(01)00005-2.
Pełny tekst źródłaLi, Zhong Jian, and Dong Li Ma. "Control Characteristics Analysis of Split-Drag-Rudder." Applied Mechanics and Materials 472 (January 2014): 185–90. http://dx.doi.org/10.4028/www.scientific.net/amm.472.185.
Pełny tekst źródłaDinh, Bao Anh, Hieu Khanh Ngo, and Van Nhu Nguyen. "An efficient low-speed airfoil design optimization process using multi-fidelity analysis for UAV flying wing." Science and Technology Development Journal 19, no. 3 (2016): 43–52. http://dx.doi.org/10.32508/stdj.v19i3.519.
Pełny tekst źródłaLiu, Lan, and Zhao Xia He. "Simulation and Experiment for Rigid and Flexible Wings of Flapping-Wings Microrobots." Advanced Materials Research 97-101 (March 2010): 4513–16. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.4513.
Pełny tekst źródłaDimitriadis, G., J. D. Gardiner, P. G. Tickle, J. Codd, and R. L. Nudds. "Experimental and numerical study of the flight of geese." Aeronautical Journal 119, no. 1217 (2015): 803–32. http://dx.doi.org/10.1017/s0001924000010939.
Pełny tekst źródłaPlaza-Buendía, Jorge, Juana María Mirón-Gatón, Antonio José García-Meseguer, Adrián Villastrigo, Andrés Millán, and Josefa Velasco. "Flight Dispersal in Supratidal Rockpool Beetles." Insects 15, no. 3 (2024): 140. http://dx.doi.org/10.3390/insects15030140.
Pełny tekst źródłaPan, Yalin, and Jun Huang. "Influences of airfoil profile on lateral-directional stability of aircraft with flying wing layout." Aircraft Engineering and Aerospace Technology 91, no. 7 (2019): 1011–17. http://dx.doi.org/10.1108/aeat-04-2018-0119.
Pełny tekst źródłaJohansson, L. Christoffer, Sophia Engel, Emily Baird, Marie Dacke, Florian T. Muijres, and Anders Hedenström. "Elytra boost lift, but reduce aerodynamic efficiency in flying beetles." Journal of The Royal Society Interface 9, no. 75 (2012): 2745–48. http://dx.doi.org/10.1098/rsif.2012.0053.
Pełny tekst źródłaDai, Shuhao, Hongli Ji, Chongcong Tao, Chao Zhang, and Jinhao Qiu. "Design and thermal protection performance analysis of insulated wing storage box for hypersonic variable-sweep aircraft." Journal of Physics: Conference Series 2764, no. 1 (2024): 012043. http://dx.doi.org/10.1088/1742-6596/2764/1/012043.
Pełny tekst źródłaSTOICA, Cornel, Dumitru PEPELEA, Mihai NICULESCU, and Adrian TOADER. "AERODYNAMIC DESIGN CONSIDERATIONS OF A FLYING WING TYPE UAV." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 19, no. 1 (2017): 213–20. http://dx.doi.org/10.19062/2247-3173.2017.19.1.24.
Pełny tekst źródłaHawkes, Elliot W., and David Lentink. "Fruit fly scale robots can hover longer with flapping wings than with spinning wings." Journal of The Royal Society Interface 13, no. 123 (2016): 20160730. http://dx.doi.org/10.1098/rsif.2016.0730.
Pełny tekst źródłaXu, Liang, Bin Chen, and Jieke Yao. "A Comparative Correction Method for CFD Numerical Simulation and Wind Tunnel Experiment of Flying Wing Aircraft with Small Aspect Ratio." Scientific Journal of Intelligent Systems Research 7, no. 6 (2025): 31–38. https://doi.org/10.54691/32p5g571.
Pełny tekst źródłaLiu, Xiaodong, Peiliang Zhang, Guanghong He, Yongen Wang, and Xudong Yang. "Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 39, no. 4 (2021): 753–60. http://dx.doi.org/10.1051/jnwpu/20213940753.
Pełny tekst źródłaWang, Yunjie, Yajun Yin, Gangtie Zheng, and Hongxiang Yao. "Driving mechanism of dragonfly’s wing flapping pattern for liquid circulation inside wing." Animal Biology 71, no. 1 (2020): 85–101. http://dx.doi.org/10.1163/15707563-bja10048.
Pełny tekst źródła