Artykuły w czasopismach na temat „Forest-Atmosphere exchanges”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Forest-Atmosphere exchanges”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Serra-Neto, Edivaldo M., Hardiney S. Martins, Cléo Q. Dias-Júnior, et al. "Simulation of the Scalar Transport above and within the Amazon Forest Canopy." Atmosphere 12, no. 12 (2021): 1631. http://dx.doi.org/10.3390/atmos12121631.
Pełny tekst źródłaWiedinmyer, Christine, Michael Barlage, Mukul Tewari, and Fei Chen. "Meteorological Impacts of Forest Mortality due to Insect Infestation in Colorado." Earth Interactions 16, no. 2 (2012): 1–11. http://dx.doi.org/10.1175/2011ei419.1.
Pełny tekst źródłaPinheiro, Di Angelo Matos, Cléo Quaresma Dias-Júnior, Leonardo Deane de Abreu Sá, and Antonio Ocimar Manzi. "Usando a altura do ponto de inflexão no perfil do vento para a obtenção de perfis adimensionais acima da floresta amazônica." Ciência e Natura 42 (August 28, 2020): e24. http://dx.doi.org/10.5902/2179460x53225.
Pełny tekst źródłaSmallman, T. L., J. B. Moncrieff, and M. Williams. "WRFv3.2-SPAv2: development and validation of a coupled ecosystem–atmosphere model, scaling from surface fluxes of CO<sub>2</sub> and energy to atmospheric profiles." Geoscientific Model Development 6, no. 4 (2013): 1079–93. http://dx.doi.org/10.5194/gmd-6-1079-2013.
Pełny tekst źródłaSmallman, T. L., J. B. Moncrieff, and M. Williams. "WRFv3.2-SPAv2: development and validation of a coupled ecosystem-atmosphere model, scaling from surface fluxes of CO<sub>2</sub> and energy to atmospheric profiles." Geoscientific Model Development Discussions 6, no. 1 (2013): 1559–98. http://dx.doi.org/10.5194/gmdd-6-1559-2013.
Pełny tekst źródłaBarr, Jordan G., Vic Engel, José D. Fuentes, et al. "Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park." Journal of Geophysical Research: Biogeosciences 115, G2 (2010): n/a. http://dx.doi.org/10.1029/2009jg001186.
Pełny tekst źródłaSavage, K., T. R. Moore, and P. M. Crill. "Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils." Journal of Geophysical Research: Atmospheres 102, no. D24 (1997): 29279–88. http://dx.doi.org/10.1029/97jd02233.
Pełny tekst źródłaLamaux, E., A. Labatut, J. Fontan, A. Lopez, A. Druilhet, and Y. Brunet. "Biosphere atmosphere exchanges: Ozone and aerosol dry deposition velocities over a pine forest." Environmental Monitoring and Assessment 31-31, no. 1-2 (1994): 175–81. http://dx.doi.org/10.1007/bf00547194.
Pełny tekst źródłaAbril, Adriana B., Patricia A. Torres, and Enrique H. Bucher. "The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland." Journal of Tropical Ecology 21, no. 1 (2005): 103–7. http://dx.doi.org/10.1017/s0266467404001981.
Pełny tekst źródłaLamaud, E., Y. Brunet, A. Labatut, A. Lopez, J. Fontan, and A. Druilhet. "The Landes experiment: Biosphere-atmosphere exchanges of ozone and aerosol particles above a pine forest." Journal of Geophysical Research 99, no. D8 (1994): 16511. http://dx.doi.org/10.1029/94jd00668.
Pełny tekst źródłaKing, Gary M., and M. Hungria. "Soil-Atmosphere CO Exchanges and Microbial Biogeochemistry of CO Transformations in a Brazilian Agricultural Ecosystem." Applied and Environmental Microbiology 68, no. 9 (2002): 4480–85. http://dx.doi.org/10.1128/aem.68.9.4480-4485.2002.
Pełny tekst źródłaEerdekens, G., L. Ganzeveld, J. Vilà-Guerau de Arellano, et al. "Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign." Atmospheric Chemistry and Physics Discussions 8, no. 4 (2008): 12903–69. http://dx.doi.org/10.5194/acpd-8-12903-2008.
Pełny tekst źródłaPastorelli, Roberta, Isabella De Meo, and Alessandra Lagomarsino. "The Necrobiome of Deadwood: The Life after Death." Ecologies 4, no. 1 (2022): 20–38. http://dx.doi.org/10.3390/ecologies4010003.
Pełny tekst źródłaMoreaux, Virginie, Simon Martel, Alexandre Bosc, et al. "Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0." Geoscientific Model Development 13, no. 12 (2020): 5973–6009. http://dx.doi.org/10.5194/gmd-13-5973-2020.
Pełny tekst źródłaFang, H., G. Yu, S. Cheng, et al. "Effects of multiple environmental factors on CO<sub>2</sub> emission and CH<sub>4</sub> uptake from old-growth forest soils." Biogeosciences Discussions 6, no. 4 (2009): 7821–52. http://dx.doi.org/10.5194/bgd-6-7821-2009.
Pełny tekst źródłaArain, M. A., T. A. Black, A. G. Barr, et al. "Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests." Canadian Journal of Forest Research 32, no. 5 (2002): 878–91. http://dx.doi.org/10.1139/x01-228.
Pełny tekst źródłaRuiz-Pérez, Guiomar, Samuli Launiainen, and Giulia Vico. "Role of Plant Traits in Photosynthesis and Thermal Damage Avoidance under Warmer and Drier Climates in Boreal Forests." Forests 10, no. 5 (2019): 398. http://dx.doi.org/10.3390/f10050398.
Pełny tekst źródłaHoremans, Joanna A., Alexandra Henrot, Christine Delire, et al. "Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands." Central European Forestry Journal 63, no. 4 (2017): 153–72. http://dx.doi.org/10.1515/forj-2017-0025.
Pełny tekst źródłaNapoly, Adrien, Aaron Boone, Patrick Samuelsson, et al. "The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites." Geoscientific Model Development 10, no. 4 (2017): 1621–44. http://dx.doi.org/10.5194/gmd-10-1621-2017.
Pełny tekst źródłaBarr, J. G., J. D. Fuentes, M. S. DeLonge, T. L. O'Halloran, D. Barr, and J. C. Zieman. "Influences of tidal energy advection on the surface energy balance in a mangrove forest." Biogeosciences Discussions 9, no. 8 (2012): 11739–65. http://dx.doi.org/10.5194/bgd-9-11739-2012.
Pełny tekst źródłaBarr, J. G., J. D. Fuentes, M. S. DeLonge, T. L. O'Halloran, D. Barr, and J. C. Zieman. "Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest." Biogeosciences 10, no. 1 (2013): 501–11. http://dx.doi.org/10.5194/bg-10-501-2013.
Pełny tekst źródłaLiu, Zelin, Changhui Peng, Louis De Grandpré, Jean-Noël Candau, Xiaolu Zhou, and Daniel Kneeshaw. "Development of a New TRIPLEX-Insect Model for Simulating the Effect of Spruce Budworm on Forest Carbon Dynamics." Forests 9, no. 9 (2018): 513. http://dx.doi.org/10.3390/f9090513.
Pełny tekst źródłaWang, Xiaofei, Guang Zheng, Zengxin Yun, and L. Monika Moskal. "Characterizing Tree Spatial Distribution Patterns Using Discrete Aerial Lidar Data." Remote Sensing 12, no. 4 (2020): 712. http://dx.doi.org/10.3390/rs12040712.
Pełny tekst źródłaTeng, Dexiong, Xuemin He, Lu Qin, and Guanghui Lv. "Energy Balance Closure in the Tugai Forest in Ebinur Lake Basin, Northwest China." Forests 12, no. 2 (2021): 243. http://dx.doi.org/10.3390/f12020243.
Pełny tekst źródłaZhang, Wei, Xunhua Zheng, Siqi Li, et al. "Modelling forest-atmosphere exchanges of carbon and water using an improved hydro-biogeochemical model in subtropical and temperate monsoon climates." Ecological Modelling 507 (August 2025): 111174. https://doi.org/10.1016/j.ecolmodel.2025.111174.
Pełny tekst źródłaMajasalmi, Titta, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright. "An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data." Biogeosciences 15, no. 2 (2018): 399–412. http://dx.doi.org/10.5194/bg-15-399-2018.
Pełny tekst źródłaJackson, Toby D., Sarab Sethi, Ebba Dellwik, et al. "The motion of trees in the wind: a data synthesis." Biogeosciences 18, no. 13 (2021): 4059–72. http://dx.doi.org/10.5194/bg-18-4059-2021.
Pełny tekst źródłaZhu, Huajie, Mousong Wu, Fei Jiang, et al. "Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)." Geoscientific Model Development 17, no. 16 (2024): 6337–63. http://dx.doi.org/10.5194/gmd-17-6337-2024.
Pełny tekst źródłaBright, Ryan M., Clara Antón-Fernández, Rasmus Astrup, and Anders H. Strømman. "Empirical models of albedo transitions in managed boreal forests: analysis of performance and transportability." Canadian Journal of Forest Research 45, no. 2 (2015): 195–206. http://dx.doi.org/10.1139/cjfr-2014-0132.
Pełny tekst źródłaFang, H. J., G. R. Yu, S. L. Cheng, et al. "Effects of multiple environmental factors on CO<sub>2</sub> emission and CH<sub>4</sub> uptake from old-growth forest soils." Biogeosciences 7, no. 1 (2010): 395–407. http://dx.doi.org/10.5194/bg-7-395-2010.
Pełny tekst źródłaToda, Motomu, Kumiko Takata, Naoyuki Nishimura, et al. "Simulating seasonal and inter-annual variations in energy and carbon exchanges and forest dynamics using a process-based atmosphere–vegetation dynamics model." Ecological Research 26, no. 1 (2010): 105–21. http://dx.doi.org/10.1007/s11284-010-0763-6.
Pełny tekst źródłaMurkute, Charuta, Mostafa Sayeed, Franz Pucha-Cofrep, et al. "Turbulent Energy and Carbon Fluxes in an Andean Montane Forest—Energy Balance and Heat Storage." Forests 15, no. 10 (2024): 1828. http://dx.doi.org/10.3390/f15101828.
Pełny tekst źródłaGraveline, Vincent, Manuel Helbig, Gabriel Hould Gosselin, et al. "Surface-atmosphere energy exchanges and their effects on surface climate and atmospheric boundary layer characteristics in the forest-tundra ecotone in northwestern Canada." Agricultural and Forest Meteorology 350 (May 2024): 109996. http://dx.doi.org/10.1016/j.agrformet.2024.109996.
Pełny tekst źródłaZhao, Y., Y. Z. Wang, Z. H. Xu, and L. Fu. "Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia." Biogeosciences 12, no. 21 (2015): 6279–90. http://dx.doi.org/10.5194/bg-12-6279-2015.
Pełny tekst źródłaZhao, Y., Y. Z. Wang, Z. H. Xu, and L. Fu. "Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia." Biogeosciences Discussions 12, no. 13 (2015): 10679–706. http://dx.doi.org/10.5194/bgd-12-10679-2015.
Pełny tekst źródłaSmallman, T. L., M. Williams, and J. B. Moncrieff. "Can seasonal and interannual variation in landscape CO<sub>2</sub> fluxes be detected by atmospheric observations of CO<sub>2</sub> concentrations made at a tall tower?" Biogeosciences Discussions 10, no. 8 (2013): 14301–31. http://dx.doi.org/10.5194/bgd-10-14301-2013.
Pełny tekst źródłaNguyen, Vinh Xuan, Carlos P. Guerra Torres, Shilpi Yadav, Marian Pavelka, and Michal V. Marek. "Wind characteristics of CzeCOS’s ecosystem station Bílý Kříž." Beskydy 10, no. 1-2 (2017): 33–40. http://dx.doi.org/10.11118/beskyd201710010033.
Pełny tekst źródłaBannister, Edward J., Mike Jesson, Nicholas J. Harper, et al. "Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment." Atmospheric Chemistry and Physics 23, no. 3 (2023): 2145–65. http://dx.doi.org/10.5194/acp-23-2145-2023.
Pełny tekst źródłaRawlins, M. A., A. D. McGuire, J. K. Kimball, et al. "Assessment of model estimates of land–atmosphere CO<sub>2</sub> exchange across Northern Eurasia." Biogeosciences Discussions 12, no. 3 (2015): 2257–305. http://dx.doi.org/10.5194/bgd-12-2257-2015.
Pełny tekst źródłaSoudani, Kamel, Nicolas Delpierre, Daniel Berveiller, et al. "A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests." Biogeosciences 18, no. 11 (2021): 3391–408. http://dx.doi.org/10.5194/bg-18-3391-2021.
Pełny tekst źródłaBeringer, J., L. B. Hutley, N. J. Tapper, A. Coutts, A. Kerley, and A. P. O'Grady. "Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia." International Journal of Wildland Fire 12, no. 4 (2003): 333. http://dx.doi.org/10.1071/wf03023.
Pełny tekst źródłaXin, Q., P. Gong, and W. Li. "Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes." Biogeosciences 12, no. 11 (2015): 3447–67. http://dx.doi.org/10.5194/bg-12-3447-2015.
Pełny tekst źródłaLekka, Christina, George P. Petropoulos, and Spyridon E. Detsikas. "A First Verification of Sim2DSphere Model’s Ability to Predict the Spatiotemporal Variability of Parameters Characterizing Land Surface Interactions at Diverse European Ecosystems." Sensors 25, no. 5 (2025): 1501. https://doi.org/10.3390/s25051501.
Pełny tekst źródłaStrasser, Ulrich, Michael Warscher, and Glen E. Liston. "Modeling Snow–Canopy Processes on an Idealized Mountain." Journal of Hydrometeorology 12, no. 4 (2011): 663–77. http://dx.doi.org/10.1175/2011jhm1344.1.
Pełny tekst źródłaXin, Q., P. Gong, and W. Li. "Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes." Biogeosciences Discussions 12, no. 4 (2015): 3675–729. http://dx.doi.org/10.5194/bgd-12-3675-2015.
Pełny tekst źródłaGathany, Mark A., and Ingrid C. Burke. "Post-fire soil fluxes of CO2, CH4 and N2O along the Colorado Front Range." International Journal of Wildland Fire 20, no. 7 (2011): 838. http://dx.doi.org/10.1071/wf09135.
Pełny tekst źródłaGrant, R. F., T. A. Black, G. den Hartog, et al. "Diurnal and annual exchanges of mass and energy between an aspen-hazelnut forest and the atmosphere: Testing the mathematical model Ecosys with data from the BOREAS experiment." Journal of Geophysical Research: Atmospheres 104, no. D22 (1999): 27699–717. http://dx.doi.org/10.1029/1998jd200117.
Pełny tekst źródłaWADA, Ryuichi, Seiichiro YONEMURA, Akira TANI, and Mizuo KAJINO. "Review: Exchanges of O<sub>3</sub>, NO, and NO<sub>2</sub> between forest ecosystems and the atmosphere." Journal of Agricultural Meteorology 79, no. 1 (2023): 38–48. http://dx.doi.org/10.2480/agrmet.d-22-00023.
Pełny tekst źródłaDeirmendjian, Loris, Denis Loustau, Laurent Augusto, et al. "Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest." Biogeosciences 15, no. 2 (2018): 669–91. http://dx.doi.org/10.5194/bg-15-669-2018.
Pełny tekst źródłaChen, Yiying, James Ryder, Vladislav Bastrikov, et al. "Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme." Geoscientific Model Development 9, no. 9 (2016): 2951–72. http://dx.doi.org/10.5194/gmd-9-2951-2016.
Pełny tekst źródła