Gotowa bibliografia na temat „Gas migration in porous media”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gas migration in porous media”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Gas migration in porous media"
Mahabadi, Nariman, Xianglei Zheng, Tae Sup Yun, Leon van Paassen i Jaewon Jang. "Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation". Journal of Geophysical Research: Solid Earth 123, nr 2 (luty 2018): 1060–71. http://dx.doi.org/10.1002/2017jb015331.
Pełny tekst źródłaVan De Ven, C. J. C., i Kevin G. Mumford. "Visualization of gas dissolution following upward gas migration in porous media: Technique and implications for stray gas". Advances in Water Resources 115 (maj 2018): 33–43. http://dx.doi.org/10.1016/j.advwatres.2018.02.015.
Pełny tekst źródłaWang, Yang, Ping Liu, Yangwen Zhu, Guanli Xu, Zijing Cui i Ruotong Du. "Effect of Janus nanoparticles on foam snap off in porous media". Tenside Surfactants Detergents 61, nr 3 (1.05.2024): 240–49. http://dx.doi.org/10.1515/tsd-2023-2573.
Pełny tekst źródłaJung, Jongwon, Hongsig Kang, Shuang Cindy Cao, Riyadh I. Al-Raoush, Khalid Alshibli i Joo Yong Lee. "Effects of Fine-Grained Particles’ Migration and Clogging in Porous Media on Gas Production from Hydrate-Bearing Sediments". Geofluids 2019 (23.05.2019): 1–11. http://dx.doi.org/10.1155/2019/5061216.
Pełny tekst źródłaPeng, Zhigao, Shenggui Liu, Songlei Tang, Yuechao Zhao i Yingjun Li. "Multicomponent Lattice Boltzmann Simulations of Gas Transport in a Coal Reservoir with Dynamic Adsorption". Geofluids 2018 (12.07.2018): 1–13. http://dx.doi.org/10.1155/2018/5169010.
Pełny tekst źródłaMEAKIN, PAUL, GERI WAGNER, VIDAR FRETTE, JENS FEDER i TORSTEIN JØSSANG. "FRACTALS AND SECONDARY MIGRATION". Fractals 03, nr 04 (grudzień 1995): 799–806. http://dx.doi.org/10.1142/s0218348x95000709.
Pełny tekst źródłaEzeuko, C. C., i S. R. McDougall. "Modeling Flow Transitions during Buoyancy-Driven Gas Migration in Liquid-Saturated Porous Media". Vadose Zone Journal 9, nr 3 (sierpień 2010): 597–609. http://dx.doi.org/10.2136/vzj2009.0037.
Pełny tekst źródłaMasum, S. A., P. J. Vardon, H. R. Thomas, Q. Chen i D. Nicholson. "Multicomponent gas flow through compacted clay buffer in a higher activity radioactive waste geological disposal facility". Mineralogical Magazine 76, nr 8 (grudzień 2012): 3337–44. http://dx.doi.org/10.1180/minmag.2012.076.8.46.
Pełny tekst źródłaMunholland, Jonah L., Kevin G. Mumford i Bernard H. Kueper. "Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating". Journal of Contaminant Hydrology 184 (styczeń 2016): 14–24. http://dx.doi.org/10.1016/j.jconhyd.2015.10.011.
Pełny tekst źródłaAn, Huaming, Ruyue Gong, Xingxing Liang i Hongsheng Wang. "Numerical Simulation Study on Gas Migration Patterns in Ultra-Long Fully Mechanized Caving Face and Goaf of High Gas and Extra-Thick Coal Seams". Fire 8, nr 1 (31.12.2024): 13. https://doi.org/10.3390/fire8010013.
Pełny tekst źródłaRozprawy doktorskie na temat "Gas migration in porous media"
Awan, Faisal Ur Rahman. "Electrokinetic investigation of coal fines in fractured and porous media". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2523.
Pełny tekst źródłaBahlouli, Mohamed Haythem. "Modélisation couplée des écoulements liquide-gaz et de l'hydro-mécanique dans un stockage géologique de déchets radioactifs". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2025. http://www.theses.fr/2025TLSEP028.
Pełny tekst źródłaAs a safe long-term management of nuclear waste, deep geological disposal was proposed and is the widely accepted approach to deal with high-level radioactive waste. It is currently being under study in several countries. The long-term safety in a deep geological repository (DGR) is ensured through a multi-barrier system provided by engineered barrier and natural barrier systems. In most multi-barrier system concepts in crystalline and clay rock, argillaceous materials (clay rock or bentonite) are envisaged to use for barrier elements. Due to its very low hydraulic conductivity, low molecular diffusion and significant radionuclide retention capacity, COx claystone is considered as a potential geological host formation for an industrial radioactive waste repository in France. The performance of the host rock and engineered barriers in the construction phase and in a long-term perspective (thousands to million of years) is of primary importance for predicting the risk of dissemination of radioactivity. After the deep geological repository is closed and sealed, significant gas quantity can be generated due to several processes such as the anaerobic metal corrosion, water radiolysis and microbial reactions. Predicting gas flow in low-permeable, saturated materials is a challenging but important task in the risk assessment of a deep geological repository. Pressure build-up and gas migration in host rock and engineered barriers constitute a highly coupled hydro-mechanical (HM) process, and may contribute to the development of preferential gas pathways either by gas-induced micro-fracturing or macro-fracturing. In current numerical studies some behaviors still cannot be well represented, in particular, it is challenging to explain the gas migration behavior in the gas injection tests conducted on the clayey rock and barriers materials. Therefore, to better represent the actual physical process of gas flow, several modeling frameworks are proposed in the present thesis: single-phase gas flow (H2), two-phase water-gas multi-component flow (air, H2), and hydro-mechanical coupling (poro-elasticity). Two-phase gas-water flow in the waste cell model at different scales (a single waste cell contains several High Level Waste containers) is used here to quantitatively study transient hydraulic water-gas phenomena, such as gas pressure evolution and clayey rock desaturation. A wide range of scenarios and hypotheses is tested to assess significant differences between different scenarios in controlling gas migration and the transition from single phase water saturated conditions to two-phase and single phase gas. Although efficient in studying gas migration in presence of hydrogen only, the proposed models has presented a major limitation because of the difficulty in assessing gas phase evolution in presence of air. Multiphase flow of water with a gas phase (hydrogen and air) together with consideration of dissolved hydrogen, air and water vapor diffusion, is studied using equation of state EOS7R (water, brine, RN1, RN2, air) of the TOUGH2 family of codes. We have implemented code enhancements and post-processing scripts, which enhanced our capabilities in analyzing and interpreting results. A separate study of single phase gas flow was developed in order to assess analytically the sensitivity of gas flow phenomena to various rock parameters, including for instance the Klinkenberg effect due to gas slippage at low pressure in tight pores. Concerning the hydromechanical coupling, an extensive review was developed, including poroelastic coupling in the presence of gas. A linear poroelastic model based on Biot theory is studied and implemented in the Finite Elements software COMSOL Multiphysics. The coupling allows us to capture the interaction between fluid pressure variation and the stresses and strains in the porous rock (drained and undrained tests)
Kampel, Guido. "Mathematical Modeling of Fines Migration snd Clogging in Porous Media". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19764.
Pełny tekst źródłaKampel, Guido. "Mathematical modeling of fines migration and clogging in porous media". Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19764.
Pełny tekst źródłaCommittee Chair: Goldsztein, Guillermo; Committee Member: Dieci, Luca; Committee Member: McCuan, John; Committee Member: Santamarina, Juan; Committee Member: Zhou, Haomin.
Jamiolahmady, Mahmoud. "Mechanistic modelling of gas-condensate flow in porous media". Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/532.
Pełny tekst źródłaSANTOS, MARCOS PAULO PEREIRA C. DOS. "PORE NETWORK MODEL FOR RETROGRADE GAS FLOW IN POROUS MEDIA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32319@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A produtividade de poços produtores de gás, que operam com pressões de fundo inferiores à pressão de orvalho, é afetada pelo aparecimento da saturação de líquido em seus entornos. Para entender esse fenômeno, conhecido como bloqueio por condensado, os simuladores em escala de poros são ferramentas úteis na investigação dos parâmetros que influenciam na quantidade e na distribuição da saturação de condensado, assim como seus efeitos na redução do fluxo de gás. Esse trabalho apresenta um modelo de rede de capilares composicional e isotérmico para o estudo do escoamento de gás retrógrado em meios porosos. Forças capilares e gravitacionais não foram consideradas. O escoamento monofásico é comutado para bifásico de padrão anular quando a pressão e a composição do fluido atingem um critério de estabilidade. O método de Newton é aplicado para resolver as equações de fluxo e consistência dos volumes e calcular o transporte de cada um dos componentes ao longo da rede. As propriedades do fluido e o comportamento do escoamento foram testadas contra os resultados de um simulador termodinâmico comercial e soluções analíticas, respectivamente. Após validação, o simulador foi utilizado para obter curvas de permeabilidade relativa gás-líquido através da despressurização de uma rede 2D e alguns resultados são discutidos.
Gas well deliverability in retrograde gas reservoirs is affected by the appearance of liquid saturation around the wellbore when the bottom-hole pressure is below the dew point. Pore-scale simulators are used to model this phenomenon, known as condensate blockage, and to investigate parameters that ifluence the amount and the distribution of condensate saturation, as well as how it chokes the gas flow. Here, a fully-implicit isothermal compositional pore-scale network model is presented for retrograde gas flow in porous media. Capillary and gravitational forces are neglected. The model shifts from single-phase flow to annular flow regime when the pressure and the fluid composition reach a stability criteria. Newton s method is applied on flow and volume consistency equations to calculate the transport of each component through the network. Fluid properties and flow behavior were tested against a commercial thermodynamic simulator and analytical solutions respectively. After validation, the simulator was used to predict gas-liquid relative permeability from a depletion process in a 2D network and some results are discussed.
Boltze, Uta. "Gas emissions relevant to waste management, through watertables in porous media". Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307822.
Pełny tekst źródłaVieira, Rodriguez Cristian. "Calibration of Electrical Methods for Detecting Gas Injection in Porous Media". Paris, Institut de physique du globe, 2013. http://www.theses.fr/2013GLOB1001.
Pełny tekst źródłaGill, Richard T. "Electrokinetic-enhanced migration of solutes for improved bioremediation in heterogeneous granular porous media". Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12712/.
Pełny tekst źródłaShiko, Elenica. "NMR and gas sorption studies of structure-transport relationships in porous media". Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582800.
Pełny tekst źródłaKsiążki na temat "Gas migration in porous media"
Li, Dang, i Junbin Chen. Mechanics of Oil and Gas Flow in Porous Media. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7313-2.
Pełny tekst źródłaKoponen, Antti. Simulations of fluid flow in porous media by lattice-gas and lattice-Boltzmann methods. Jyväskylä: University of Jyväskylä, 1998.
Znajdź pełny tekst źródłaStanisław, Jucha, red. The Flows of fluids in the porous media: Proceedings of the international symposium = Przepływy płynów w ośrodkach porowatych materiały : miedzynarodowego sympozjum. Kraków: Wydawn. AGH, 1986.
Znajdź pełny tekst źródłaGuo, Weixing. Numerical simulation of coupled heat transfer and gas flow in porous media with applications to acid mine drainage. University Park, PA: Dept. of Geosciences, Pennsylvania State University, 1993.
Znajdź pełny tekst źródłaThomas, Lee W. Three-phase dynamic displacement measurements of relative permeability in porous media using three immiscible liquids: A thesis in Petroleum and Natural Gas Engineering. Springfield, Va: Available from the National Technical Information Service, 1991.
Znajdź pełny tekst źródłaHo, Clifford K., i Stephen W. Webb. Gas Transport in Porous Media. Springer London, Limited, 2006.
Znajdź pełny tekst źródłaHo, Clifford K., i Stephen W. Webb, red. Gas Transport in Porous Media. Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3962-x.
Pełny tekst źródłaHo, Clifford K., i Stephen W. Webb. Gas Transport in Porous Media. Springer, 2008.
Znajdź pełny tekst źródłaHo, Clifford K., i Stephen W. Webb. Gas Transport in Porous Media. Springer Netherlands, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Gas migration in porous media"
Meakin, Paul, Geri Wagner, Vidar Frette, Torstein Jøssang, Jens Feder i Aleksandar Birovljev. "Gradient-Driven Migration in Porous Media: Experiments and Simulations". W North Sea Oil and Gas Reservoirs — III, 297–305. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0896-6_26.
Pełny tekst źródłaWu, Lei. "Porous Media Flow". W Rarefied Gas Dynamics, 209–16. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2872-7_12.
Pełny tekst źródłaMarcelis, Fons, i Steffen Berg. "North Netherlands Gas Reservoir". W Album of Porous Media, 39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_27.
Pełny tekst źródłaAlhosani, Abdulla, Branko Bijeljic i Martin Blunt. "Disconnected Gas Flow in Hydrophobic Porous Media". W Album of Porous Media, 110. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_90.
Pełny tekst źródłaChakraborty, Nirjhor, i Zuleima Karpyn. "Adsorption Enhanced Gas Uptake in Nanodarcy Permeability Shale". W Album of Porous Media, 105. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_85.
Pełny tekst źródłaGao, Ying, Ab Coorn, Niels Brussee, Hilbert van der Linde i Steffen Berg. "Gas Trapped in the Pore Space of a Sandstone". W Album of Porous Media, 108. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_88.
Pełny tekst źródłaSingh, Ashok, i Olaf Kolditz. "Gas Flow". W Thermo-Hydro-Mechanical-Chemical Processes in Porous Media, 149–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27177-9_8.
Pełny tekst źródłaChen, Qiang, Shaobo Diao i Yuguang Ye. "Detecting Hydrate in Porous Media Using Electrical Resistance". W Natural Gas Hydrates, 127–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31101-7_4.
Pełny tekst źródłaChen, Qiang, Shaobo Diao i Yuguang Ye. "Thermophysical Properties of Gas Hydrate in Porous Media". W Natural Gas Hydrates, 141–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31101-7_5.
Pełny tekst źródłaNiblett, Daniel, Vahid Niasar, Adrian Mularczyk i Jens Eller. "Droplet Detachment from a gas Diffusion Layer of a Pem Fuel Cell". W Album of Porous Media, 136. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_113.
Pełny tekst źródłaStreszczenia konferencji na temat "Gas migration in porous media"
Lopuh, Nazariy, i Yaroslav Pyanylo. "Simulation of Gas Filtration Processes in Fractured-Porous Media". W 2024 14th International Conference on Advanced Computer Information Technologies (ACIT), 107–11. IEEE, 2024. http://dx.doi.org/10.1109/acit62333.2024.10712605.
Pełny tekst źródłaAlbaba, Mhd Taisir, Jamal Hannun i Riyadh Al-Raoush. "Impact of Pore Morphology on Colloid Migration at Variable Saturation Levels of Natural Porous Media". W The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0167.
Pełny tekst źródłaHannun, Jamal, i Riyadh Al-Raoush. "Retention of Hydrophobic Colloids in Unsaturated Porous Media using Microfluidics". W The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0177.
Pełny tekst źródłaTanaka, Yukihisa. "Development of Numerical Simulation Method for Gas Migration Through Highly-Compacted Bentonite Using Model of Two-Phase Flow Through Deformable Porous Media". W ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40012.
Pełny tekst źródłaZhang, Zheng, Zhenhua Rui, Yueliang Liu i Yang Zhao. "Monitoring and Quantification of Trapped CO2 in Porous Media: A Low-Field Online NMR Investigation on CO2 Flooding And Sequestration of Low Permeability Reservoir". W International Petroleum Technology Conference. IPTC, 2025. https://doi.org/10.2523/iptc-24967-ms.
Pełny tekst źródłaZhang, Jian, Zhe Sun, Xiujun Wang i Xiaodong Kang. "Study on the Oil Displacement Effect and Application of Soft Microgel Flooding Technology". W SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204764-ms.
Pełny tekst źródłaNishad, Safna, i Riyadh Al-Raoush. "Micromodel Study on Pore Scale Mechanisms associated with Permeability Impairment in Porous Media". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0071.
Pełny tekst źródłaZhang, Ruihua, Guohua Chen i Si Huang. "A Multiphase Mixture Flow Model and Numerical Simulation for the Release of LPG Underground Storage Tank in Porous Environment". W ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26415.
Pełny tekst źródłaElrahmani, Ahmed, i Riyadh I. Al-Raoush. "The Dependent Clogging Dynamics and Its Impact on Porous Media Permeability Reduction". W The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0152.
Pełny tekst źródłaDai, Q., Y. Meng, K. Duan i C. Y. Kwok. "Development of Multiphase Flow Simulation Method in DEM Under a Fixed-Grain Condition". W 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0532.
Pełny tekst źródłaRaporty organizacyjne na temat "Gas migration in porous media"
Oldenburg, Curtis M. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems. Office of Scientific and Technical Information (OSTI), marzec 2015. http://dx.doi.org/10.2172/1225362.
Pełny tekst źródłaS. Finsterle, J. T. Fabryka-Martin i J. S. Y. Wang. Migration of Water Pulse Through Fractured Porous Media. Office of Scientific and Technical Information (OSTI), czerwiec 2001. http://dx.doi.org/10.2172/786566.
Pełny tekst źródłaNoordally, E., J. M. Przybylski i J. J. Witton. Porous Media Combustors for Clean Gas Turbine Engines. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2004. http://dx.doi.org/10.21236/ada429813.
Pełny tekst źródłaAbriola, Linda M., Avery H. Demond i Robert Glass. The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/827039.
Pełny tekst źródłaABRIOLA, Linda M., i Avery H. DEMOND. THE MIGRATION AND ENTRAPMENT OF DNAPLS IN PHYSICALLY AND CHEMICALLY HETEROGENEOUS POROUS MEDIA. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/827041.
Pełny tekst źródłaHudson, G. B., i J. E. Moran. Delineation of Fast Flow Paths in Porous Media Using Noble Gas Tracers. Office of Scientific and Technical Information (OSTI), marzec 2002. http://dx.doi.org/10.2172/15006862.
Pełny tekst źródłaAbriola, L. M., i A. H. Demond. The migration and entrapment of DNAPLs in physically and chemically heterogeneous porous media. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), czerwiec 1998. http://dx.doi.org/10.2172/13605.
Pełny tekst źródłaFoh, Stephen, N. Poonawala i J. Pritchett. PR-4-172-R01 Modeling of Mixing in Porous Media. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 1985. http://dx.doi.org/10.55274/r0011433.
Pełny tekst źródłaAbbas Firoozabadi. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS. Office of Scientific and Technical Information (OSTI), grudzień 2003. http://dx.doi.org/10.2172/834360.
Pełny tekst źródłaAbbas Firoozabadi. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS. Office of Scientific and Technical Information (OSTI), październik 2001. http://dx.doi.org/10.2172/834362.
Pełny tekst źródła