Artykuły w czasopismach na temat „Gaseous mediator”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Gaseous mediator”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhu, Zhixing, Stephen Chambers, Yiming Zeng, and Madhav Bhatia. "Gases in Sepsis: Novel Mediators and Therapeutic Targets." International Journal of Molecular Sciences 23, no. 7 (2022): 3669. http://dx.doi.org/10.3390/ijms23073669.
Pełny tekst źródłaSulaieva, O. N., and J. L. Wallace. "New strategy for gastrointestinal protection based on gaseous mediators application." Russian Journal of Gastroenterology, Hepatology, Coloproctology 26, no. 3 (2016): 17–23. http://dx.doi.org/10.22416/1382-4376-2016-26-3-17-23.
Pełny tekst źródłaEvelyn, Edy Saputra, Amun Amri, Aaron Marshall, and Peter Gostomski. "Reaction kinetics for microbial-reduced mediator in an ethanol-fed microbial fuel cell." MATEC Web of Conferences 276 (2019): 06010. http://dx.doi.org/10.1051/matecconf/201927606010.
Pełny tekst źródłaSulaieva, Oksana, and John L. Wallace. "Gaseous mediator-based anti-inflammatory drugs." Current Opinion in Pharmacology 25 (December 2015): 1–6. http://dx.doi.org/10.1016/j.coph.2015.08.005.
Pełny tekst źródłaRitter, JM. "Human pharmacology of hydrogen sulfide, putative gaseous mediator." British Journal of Clinical Pharmacology 69, no. 6 (2010): 573–75. http://dx.doi.org/10.1111/j.1365-2125.2010.03690.x.
Pełny tekst źródłaPerrotta, Cristiana, and Emilio Clementi. "Biological Roles of Acid and Neutral Sphingomyelinases and Their Regulation by Nitric Oxide." Physiology 25, no. 2 (2010): 64–71. http://dx.doi.org/10.1152/physiol.00048.2009.
Pełny tekst źródłaCarraro, S., C. Cutrone, C. Cardarelli, S. Zanconato, and E. Baraldi. "Clinical Application of Nasal Nitric Oxide Measurement." International Journal of Immunopathology and Pharmacology 23, no. 1_suppl (2010): 50–52. http://dx.doi.org/10.1177/03946320100230s113.
Pełny tekst źródłaGridina, Anna, Xiaoyu Su, Shakil A. Khan, et al. "Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells." Journal of Neurophysiology 125, no. 5 (2021): 1533–42. http://dx.doi.org/10.1152/jn.00669.2020.
Pełny tekst źródłaKim, Daekeun, Youngyu Choi, and Muthuraman Govindan. "An Electro-Reductive Removal of Gaseous Toluene By a Copper-Nickel Complex Mediator at Gas-to-Solid Interface." ECS Meeting Abstracts MA2022-01, no. 25 (2022): 1223. http://dx.doi.org/10.1149/ma2022-01251223mtgabs.
Pełny tekst źródłaWilkie, Stephen E., Gillian Borland, Roderick N. Carter, Nicholas M. Morton, and Colin Selman. "Hydrogen sulfide in ageing, longevity and disease." Biochemical Journal 478, no. 19 (2021): 3485–504. http://dx.doi.org/10.1042/bcj20210517.
Pełny tekst źródłaInoue, Ken-ichiro, Hirohisa Takano, Akinori Shimada, and Masahiko Satoh. "Metallothionein as an Anti-Inflammatory Mediator." Mediators of Inflammation 2009 (2009): 1–7. http://dx.doi.org/10.1155/2009/101659.
Pełny tekst źródłaZaborova, Victoria, Elena Budanova, Kira Kryuchkova, et al. "Nitric oxide: a gas transmitter in healthy and diseased skin." Medical Gas Research 15, no. 4 (2025): 520–28. https://doi.org/10.4103/mgr.medgasres-d-24-00144.
Pełny tekst źródłaLeffler, Charles W., Helena Parfenova, Jonathan H. Jaggar, and Rui Wang. "Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation." Journal of Applied Physiology 100, no. 3 (2006): 1065–76. http://dx.doi.org/10.1152/japplphysiol.00793.2005.
Pełny tekst źródłaMartinez-Cutillas, M., V. Gil, N. Mañé, et al. "Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility." Pharmacological Research 93 (March 2015): 52–63. http://dx.doi.org/10.1016/j.phrs.2015.01.002.
Pełny tekst źródłaXiao, Qing, Lidan Xiong, Jie Tang, Li Li, and Li Li. "Hydrogen Sulfide in Skin Diseases: A Novel Mediator and Therapeutic Target." Oxidative Medicine and Cellular Longevity 2021 (April 20, 2021): 1–11. http://dx.doi.org/10.1155/2021/6652086.
Pełny tekst źródłaWhiteman, Matthew, Sophie Le Trionnaire, Mohit Chopra, Bridget Fox, and Jacqueline Whatmore. "Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools." Clinical Science 121, no. 11 (2011): 459–88. http://dx.doi.org/10.1042/cs20110267.
Pełny tekst źródłaYing, Zanyun, Han Chen, Zheng He, et al. "Redox mediator-regulated microbial electrolysis cell to boost coulombic efficiency and degradation activity during gaseous chlorobenzene abatement." Journal of Power Sources 528 (April 2022): 231214. http://dx.doi.org/10.1016/j.jpowsour.2022.231214.
Pełny tekst źródłagallego, d., p. clavé, j. donovan, et al. "The gaseous mediator, hydrogen sulphide, inhibitsin vitromotor patterns in the human, rat and mouse colon and jejunum." Neurogastroenterology & Motility 20, no. 12 (2008): 1306–16. http://dx.doi.org/10.1111/j.1365-2982.2008.01201.x.
Pełny tekst źródłaZhu, Zhixing, Xihua Lian, and Madhav Bhatia. "Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease." Antioxidants 11, no. 11 (2022): 2162. http://dx.doi.org/10.3390/antiox11112162.
Pełny tekst źródłaWang, Xiaoyi, Hongyi Wen, Andrey Suprun, and Hongliang Zhu. "Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses." Plants 14, no. 3 (2025): 309. https://doi.org/10.3390/plants14030309.
Pełny tekst źródłaChen, Han, Yanan Yu, Yu Yu, Jiexu Ye, Shihan Zhang, and Jianmeng Chen. "Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism." Chemosphere 282 (November 2021): 131028. http://dx.doi.org/10.1016/j.chemosphere.2021.131028.
Pełny tekst źródłaWhiteman, Matthew, and Jan-Thorsten Schantz. "Inducible Synthesis of the Gaseous Mediator Hydrogen Sulfide (H2S) by Human Resident Joint Cells and BoneDerived Mesenchymal Progenitor Cells." Free Radical Biology and Medicine 49 (January 2010): S150—S151. http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.424.
Pełny tekst źródłaLiu, Yi-Hong, and Jin-Song Bian. "Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings." American Journal of Physiology-Cell Physiology 299, no. 4 (2010): C866—C872. http://dx.doi.org/10.1152/ajpcell.00105.2010.
Pełny tekst źródłaZuhra, Karim, Fiona Augsburger, Tomas Majtan та Csaba Szabo. "Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition". Biomolecules 10, № 5 (2020): 697. http://dx.doi.org/10.3390/biom10050697.
Pełny tekst źródłaShen, Yaqi, Zhuqing Shen, Shanshan Luo, Wei Guo, and Yi Zhun Zhu. "The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential." Oxidative Medicine and Cellular Longevity 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/925167.
Pełny tekst źródłaHan, Na-Ra, Seong-Gyu Ko, Hi-Joon Park та Phil-Dong Moon. "Hydrogen Sulfide Downregulates Oncostatin M Expression via PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells". Antioxidants 12, № 2 (2023): 417. http://dx.doi.org/10.3390/antiox12020417.
Pełny tekst źródłaLi, Hui, Yinghong Ma, Oliver Escaffre, et al. "Role of Hydrogen Sulfide in Paramyxovirus Infections." Journal of Virology 89, no. 10 (2015): 5557–68. http://dx.doi.org/10.1128/jvi.00264-15.
Pełny tekst źródłaBasuroy, Shyamali, Dilyara Tcheranova, Sujoy Bhattacharya, Charles W. Leffler та Helena Parfenova. "Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis". American Journal of Physiology-Cell Physiology 300, № 2 (2011): C256—C265. http://dx.doi.org/10.1152/ajpcell.00272.2010.
Pełny tekst źródłaMucha, Olga, Małgorzata Myszka, Paulina Podkalicka, et al. "Proteome Profiling of the Dystrophic mdx Mice Diaphragm." Biomolecules 13, no. 11 (2023): 1648. http://dx.doi.org/10.3390/biom13111648.
Pełny tekst źródłaSulaieva, O. N., and J. L. Wallace. "Trends in development of gi-safe anti-inflammatory drugs." Clinical Medicine (Russian Journal) 95, no. 3 (2017): 222–27. http://dx.doi.org/10.18821/0023-2149-2017-95-3-222-227.
Pełny tekst źródłaPanagaki, Theodora, Elisa B. Randi, and Csaba Szabo. "Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts." Biomolecules 10, no. 4 (2020): 653. http://dx.doi.org/10.3390/biom10040653.
Pełny tekst źródłaCHOWDHARY, Saqib, and Jonathan N. TOWNEND. "Role of nitric oxide in the regulation of cardiovascular autonomic control." Clinical Science 97, no. 1 (1999): 5–17. http://dx.doi.org/10.1042/cs0970005.
Pełny tekst źródłaAndruski, Benjamin, Donna-Marie McCafferty, Teegan Ignacy, Brandie Millen, and Jason J. McDougall. "Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 295, no. 3 (2008): R814—R820. http://dx.doi.org/10.1152/ajpregu.90524.2008.
Pełny tekst źródłaChan, Melissa V., and John L. Wallace. "Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments." American Journal of Physiology-Gastrointestinal and Liver Physiology 305, no. 7 (2013): G467—G473. http://dx.doi.org/10.1152/ajpgi.00169.2013.
Pełny tekst źródłaMostafa, Dalia K., Nesrine M. El Azhary, and Rasha A. Nasra. "The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: involvement of asymmetric dimethylarginine." Canadian Journal of Physiology and Pharmacology 94, no. 7 (2016): 699–708. http://dx.doi.org/10.1139/cjpp-2015-0316.
Pełny tekst źródłaHristov, Milen, and Pavlina Andreeva-Gateva. "Effects of simultaneous pharmacological inhibition of cystathionine gamma-lyase and nitric oxide synthase on food and water intake, body mass gain, and body temperature in rats." Journal of Biomedical and Clinical Research 17 (June 20, 2024): 133–42. https://doi.org/10.3897/jbcr.e122925.
Pełny tekst źródłaOu, Xuelan, Tianqin Xia, Chunyan Yang та ін. "Novel H2S donor proglumide-ADT-OH protects HUVECs from ox-LDL-induced injury through NF-κB and JAK/SATA pathway". Open Medicine 16, № 1 (2021): 1318–27. http://dx.doi.org/10.1515/med-2021-0287.
Pełny tekst źródłaSzabo, Csaba. "Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications." American Journal of Physiology-Cell Physiology 312, no. 1 (2017): C3—C15. http://dx.doi.org/10.1152/ajpcell.00282.2016.
Pełny tekst źródłaO, Karmin, and Yaw L. Siow. "Metabolic Imbalance of Homocysteine and Hydrogen Sulfide in Kidney Disease." Current Medicinal Chemistry 25, no. 3 (2018): 367–77. http://dx.doi.org/10.2174/0929867324666170509145240.
Pełny tekst źródłaSobko, Tanja, Claudia Reinders, Elisabeth Norin, Tore Midtvedt, Lars E. Gustafsson, and Jon O. Lundberg. "Gastrointestinal nitric oxide generation in germ-free and conventional rats." American Journal of Physiology-Gastrointestinal and Liver Physiology 287, no. 5 (2004): G993—G997. http://dx.doi.org/10.1152/ajpgi.00203.2004.
Pełny tekst źródłaKang, Minho, Atsushi Hashimoto, Aravind Gade, and Hamid I. Akbarali. "Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex." American Journal of Physiology-Gastrointestinal and Liver Physiology 308, no. 6 (2015): G532—G539. http://dx.doi.org/10.1152/ajpgi.00281.2014.
Pełny tekst źródłaXue, Xiuling, Xiaoyi Chen, and Xiuwen Gong. "Fast electron transfer and enhanced visible light photocatalytic activity of silver and Ag2O co-doped titanium dioxide with the doping of electron mediator for removing gaseous toluene." Materials Science in Semiconductor Processing 132 (September 2021): 105901. http://dx.doi.org/10.1016/j.mssp.2021.105901.
Pełny tekst źródłaRyter, Stefan. "Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders." Antioxidants 9, no. 11 (2020): 1153. http://dx.doi.org/10.3390/antiox9111153.
Pełny tekst źródłaLeffler, Charles W., Helena Parfenova, and Jonathan H. Jaggar. "Carbon monoxide as an endogenous vascular modulator." American Journal of Physiology-Heart and Circulatory Physiology 301, no. 1 (2011): H1—H11. http://dx.doi.org/10.1152/ajpheart.00230.2011.
Pełny tekst źródłaSakaguchi, Masahiro, Eizo Marutani, Hae-sook Shin, et al. "Sodium Thiosulfate Attenuates Acute Lung Injury in Mice." Anesthesiology 121, no. 6 (2014): 1248–57. http://dx.doi.org/10.1097/aln.0000000000000456.
Pełny tekst źródłaZhou, Ye-Bo, Hong Zhou, Li Li, et al. "Hydrogen Sulfide Prevents Elastin Loss and Attenuates Calcification Induced by High Glucose in Smooth Muscle Cells through Suppression of Stat3/Cathepsin S Signaling Pathway." International Journal of Molecular Sciences 20, no. 17 (2019): 4202. http://dx.doi.org/10.3390/ijms20174202.
Pełny tekst źródłaSklyarova, Yu O., and I. S. Fomenko. "ACTION OF HYDROGEN SULFIDE DONORS ON NITROSO-OXIDATIVE PROCESSES IN SMALL INTESTINE OF RATS WITH METHOTREXATE-INDUCED ENTEROPATHY." Medical and Clinical Chemistry, no. 3 (November 7, 2018): 50–56. http://dx.doi.org/10.11603/mcch.2410-681x.2018.v0.i3.9565.
Pełny tekst źródłaMyśliwiec, Angelika, Dorota Bartusik-Aebisher, and David Aebisher. "The Role of Nitric Oxide in Cancer Treatment: Ally or Foe?" Molecules 30, no. 13 (2025): 2802. https://doi.org/10.3390/molecules30132802.
Pełny tekst źródłaA. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair, and Ivan A. Sammut. "Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia." Current Drug Targets 14, no. 1 (2012): 56–73. http://dx.doi.org/10.2174/1389450111314010007.
Pełny tekst źródłaA. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair, and Ivan A. Sammut. "Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia." Current Drug Targets 14, no. 1 (2013): 56–73. http://dx.doi.org/10.2174/138945013804806433.
Pełny tekst źródła