Gotowa bibliografia na temat „Gelfand–Graev representation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gelfand–Graev representation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Gelfand–Graev representation":

1

Mishra, Manish, i Basudev Pattanayak. "Principal series component of Gelfand-Graev representation". Proceedings of the American Mathematical Society 149, nr 11 (5.08.2021): 4955–62. http://dx.doi.org/10.1090/proc/15642.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chan, Kei Yuen, i Gordan Savin. "Iwahori component of the Gelfand–Graev representation". Mathematische Zeitschrift 288, nr 1-2 (23.03.2017): 125–33. http://dx.doi.org/10.1007/s00209-017-1882-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Breeding-Allison, Jeffery, i Julianne Rainbolt. "The Gelfand–Graev representation of GSp(4,𝔽q)". Communications in Algebra 47, nr 2 (17.01.2019): 560–84. http://dx.doi.org/10.1080/00927872.2018.1485228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rainbolt, Julianne G. "The Gelfand–Graev Representation of U(3,q)". Journal of Algebra 188, nr 2 (luty 1997): 648–85. http://dx.doi.org/10.1006/jabr.1996.6860.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

TAYLOR, JAY. "GENERALIZED GELFAND–GRAEV REPRESENTATIONS IN SMALL CHARACTERISTICS". Nagoya Mathematical Journal 224, nr 1 (9.09.2016): 93–167. http://dx.doi.org/10.1017/nmj.2016.33.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Let $\mathbf{G}$ be a connected reductive algebraic group over an algebraic closure $\overline{\mathbb{F}_{p}}$ of the finite field of prime order $p$ and let $F:\mathbf{G}\rightarrow \mathbf{G}$ be a Frobenius endomorphism with $G=\mathbf{G}^{F}$ the corresponding $\mathbb{F}_{q}$-rational structure. One of the strongest links we have between the representation theory of $G$ and the geometry of the unipotent conjugacy classes of $\mathbf{G}$ is a formula, due to Lusztig (Adv. Math. 94(2) (1992), 139–179), which decomposes Kawanaka’s Generalized Gelfand–Graev Representations (GGGRs) in terms of characteristic functions of intersection cohomology complexes defined on the closure of a unipotent class. Unfortunately, the formula given in Lusztig (Adv. Math. 94(2) (1992), 139–179) is only valid under the assumption that $p$ is large enough. In this article, we show that Lusztig’s formula for GGGRs holds under the much milder assumption that $p$ is an acceptable prime for $\mathbf{G}$ ($p$ very good is sufficient but not necessary). As an application we show that every irreducible character of $G$, respectively, character sheaf of $\mathbf{G}$, has a unique wave front set, respectively, unipotent support, whenever $p$ is good for $\mathbf{G}$.
6

Curtis, Charles W., i Ken-ichi Shinoda. "Unitary Kloosterman Sums and the Gelfand–Graev Representation of GL2". Journal of Algebra 216, nr 2 (czerwiec 1999): 431–47. http://dx.doi.org/10.1006/jabr.1998.7807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kochubei, Anatoly N., i Yuri Kondratiev. "Representations of the infinite-dimensional p-adic affine group". Infinite Dimensional Analysis, Quantum Probability and Related Topics 23, nr 01 (marzec 2020): 2050002. http://dx.doi.org/10.1142/s0219025720500022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
We introduce an infinite-dimensional [Formula: see text]-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However, it is possible to define its action on some classes of functions.
8

HIROSHI, ANDO. "ON THE LOCAL STRUCTURE OF THE REPRESENTATION OF A LOCAL GAUGE GROUP". Infinite Dimensional Analysis, Quantum Probability and Related Topics 13, nr 02 (czerwiec 2010): 223–42. http://dx.doi.org/10.1142/s0219025710004036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
We discuss the local structure of the net [Formula: see text] of von Neumann algebras generated by a representation of a local gauge group [Formula: see text]. Our discussion is independent of the singularity of spectral measures, which has been discussed by many authors since the pioneering work of Gelfand–Graev–Veršic. We show that, for type (S) operators UA,b, second quantized operators with some twists, the commutativity only with those U(ψ) is sufficient for the triviality of them, where ψ belongs to an arbitrary (small) neighborhood of constant function 1. Some properties of 1-cocycles for the representation V : ψ ↦ Ad ψ are also discussed.
9

Curtis, Charles W. "On the irreducible components of a Gelfand–Graev representation of a finite Chevalley group". Pacific Journal of Mathematics 307, nr 1 (8.08.2020): 109–19. http://dx.doi.org/10.2140/pjm.2020.307.109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bonnafé, Cédric, i Raphaël Rouquier. "Coxeter Orbits and Modular Representations". Nagoya Mathematical Journal 183 (2006): 1–34. http://dx.doi.org/10.1017/s0027763000009259.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
AbstractWe study the modular representations of finite groups of Lie type arising in the cohomology of certain quotients of Deligne-Lusztig varieties associated with Coxeter elements. These quotients are related to Gelfand-Graev representations and we present a conjecture on the Deligne-Lusztig restriction of Gelfand-Graev representations. We prove the conjecture for restriction to a Coxeter torus. We deduce a proof of Brouée’s conjecture on equivalences of derived categories arising from Deligne-Lusztig varieties, for a split group of type An and a Coxeter element. Our study is based on Lusztig’s work in characteristic 0 [Lu2].

Rozprawy doktorskie na temat "Gelfand–Graev representation":

1

Li, Tzu-Jan. "On the endomorphism algebra of Gelfand–Graev representations and the unipotent ℓ-block of p-adic GL2 with ℓ ≠ p". Thesis, Sorbonne université, 2022. http://www.theses.fr/2022SORUS271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Inspiré par la conjecture de Langlands locale en familles de Dat, Helm, Kurinczuk et Moss, pour un groupe réductif connexe G défini sur F_q, nous étudions les relations des trois anneaux suivants : (i) le Z-modèle E_G des algèbres d’endomorphismes des représentations de Gelfand–Graev de G(F_q) ; (ii) l’anneau de Grothendieck K_{G*} de la catégorie des représentations de G*(F_q) de dimension finie sur F_q, avec G* le dual de Deligne–Lusztig de G ; (iii) l’anneau des fonctions B_{G^vee} du Z-schéma (T^vee // W)^{F^vee}, avec G^vee le dual de Langlands (défini et déployé sur Z) de G. Nous démontrons que Z[1/pM]E_G simeq Z[1/pM]K_{G*} comme Z[1/pM]-algèbres avec p = char(F_q) et M le produit des nombres premiers mauvais pour G, et que K_{G*} simeq B_{G^vee} comme anneaux lorsque le groupe dérivé de G^vee est simplement connexe. Profitant de ces résultats, nous donnons ensuite une description explicite du l-bloc unipotent de GL_2 p-adique avec l différent de p. Les matériaux de ce travail, sauf § 4, proviennent principalement de mon article [Li2] et de mon autre article [LiSh] en collaboration avec J. Shotton
Inspired by the conjecture of local Langlands in families of Dat, Helm, Kurinczuk and Moss, for a connected reductive group G defined over F_q, we study the relations of the following three rings: (i) the Z-model E_G of endomorphism algebras of Gelfand–Graev representations of G(F_q); (ii) the Grothendieck ring K_{G*} of the category of representations of G*(F_q) of finite dimension over F_q, with G* the Deligne–Lusztig dual of G; (iii) the ring of functions B_{G^vee} of (T^vee // W)^{F^vee}, with G^vee the Langlands dual (defined and split over Z) of G. We show that Z[1/pM]E_G simeq Z[1/pM]K_{G*} as Z[1/pM]-algebras with p = char(F_q) and M the product of bad primes for G, and that K_{G*} simeq B_{G^vee} as rings when the derived subgroup of G^vee is simply-connected. Benefiting from these results, we then give an explicit description of the unipotent l-block of p-adic GL_2 with l different from p. The material of this work, except for § 4, mainly originates from my article [Li2] and from my other article [LiSh] in collaboration with J. Shotton
2

Taylor, Jonathan. "On Unipotent Supports of Reductive Groups With a Disconnected Centre". Phd thesis, University of Aberdeen, 2012. http://tel.archives-ouvertes.fr/tel-00709051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:

Let $\mathbf{G}$ be a connected reductive algebraic group defined over an algebraic closure of the finite field of prime order $p>0$, which we assume to be good for $\mathbf{G}$. We denote by $F : \mathbf{G} \to \mathbf{G}$ a Frobenius endomorphism of $\mathbf{G}$ and by $G$ the corresponding $\mathbb{F}_q$-rational structure. If $\operatorname{Irr}(G)$ denotes the set of ordinary irreducible characters of $G$ then by work of Lusztig and Geck we have a well defined map $\Phi_{\mathbf{G}} : \operatorname{Irr}(G) \to \{F\text{-stable unipotent conjugacy classes of }\mathbf{G}\}$ where $\Phi_{\mathbf{G}}(\chi)$ is the unipotent support of $\chi$.

Lusztig has given a classification of the irreducible characters of $G$ and obtained their degrees. In particular he has shown that for each $\chi \in \operatorname{Irr}(G)$ there exists an integer $n_{\chi}$ such that $n_{\chi}\cdot\chi(1)$ is a monic polynomial in $q$. Given a unipotent class $\mathcal{O}$ of $\mathbf{G}$ with representative $u \in \mathbf{G}$ we may define $A_{\mathbf{G}}(u)$ to be the finite quotient group $C_{\mathbf{G}}(u)/C_{\mathbf{G}}(u)^{\circ}$. If the centre $Z(\mathbf{G})$ is connected and $\mathbf{G}/Z(\mathbf{G})$ is simple then Lusztig and H\'zard have independently shown that for each $F$-stable unipotent class $\mathcal$ of $\mathbf$ there exists $\chi \in \operatorname(G)$ such that $\Phi_(\chi)=\mathcal$ and $n_ = |A_(u)|$, (in particular the map $\Phi_$ is surjective).

The main result of this thesis extends this result to the case where $\mathbf$ is any simple algebraic group, (hence removing the assumption that $Z(\mathbf)$ is connected). In particular if $\mathbf$ is simple we show that for each $F$-stable unipotent class $\mathcal$ of $\mathbf$ there exists $\chi \in \operatorname(G)$ such that $\Phi_(\chi) = \mathcal$ and $n_ = |A_(u)^F|$ where $u \in \mathcal^F$ is a well-chosen representative. We then apply this result to prove, (for most simple groups), a conjecture of Kawanaka's on generalised Gelfand--Graev representations (GGGRs). Namely that the GGGRs of $G$ form a $\mathbf{Z}$-basis for the $\mathbf{Z}$-module of all unipotently supported class functions of $G$. Finally we obtain an expression for a certain fourth root of unity associated to GGGRs in the case where $\mathbf{G}$ is a symplectic or special orthogonal group.

Części książek na temat "Gelfand–Graev representation":

1

Curtis, Charles W. "On the Endomorphism Algebras of Gelfand-Graev Representations". W Finite Dimensional Algebras and Related Topics, 27–35. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1556-0_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Curtis, Charles W., i Toshiaki Shoji. "A Norm Map for Endomorphism Algebras of Gelfand-Graev Representations". W Finite Reductive Groups: Related Structures and Representations, 185–94. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-4124-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

"Regular elements; Gelfand-Graev representations". W Representations of Finite Groups of Lie Type, 119–42. Cambridge University Press, 1991. http://dx.doi.org/10.1017/cbo9781139172417.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

"Regular Elements; Gelfand–Graev Representations; Regular and Semi-Simple Characters". W Representations of Finite Groups of Lie Type, 196–224. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108673655.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

"Jacquet modules corresponding to Gelfand - Graev characters of parabolically induced representations". W The Descent Map from Automorphic Representations of GL(n) to Classical Groups, 81–120. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814304993_0005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

"Coefficients of Gelfand-Graev Type, of Fourier-Jacobi Type, and Descent". W The Descent Map from Automorphic Representations of GL(n) to Classical Groups, 41–63. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814304993_0003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yamashita, Hiroshi. "Multiplicity One Theorems for Generalized Gelfand-Graev Representations of Semisimple Lie Groups and Whittaker Models for the Discrete Series". W Representations of Lie Groups, Kyoto, Hiroshima, 1986, 31–121. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-12-525100-6.50007-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Do bibliografii