Gotowa bibliografia na temat „Generalized Multi poly-Bernoulli polynomials”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Generalized Multi poly-Bernoulli polynomials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Generalized Multi poly-Bernoulli polynomials"

1

El-Desouky, Beih, Rabab Gomaa, and Alia Magar. "The multi-variable unified family of generalized Apostol-type polynomials." Applicable Analysis and Discrete Mathematics, no. 00 (2020): 15. http://dx.doi.org/10.2298/aadm190405015e.

Pełny tekst źródła
Streszczenie:
The aim of this paper is to investigate and give a new family of multi-variable Apostol-type polynomials. This family is related to Apostol-Euler, Apostol-Bernoulli, Apostol-Genocchi and Apostol-laguerre polynomials. Moreover, we derive some implicit summation formulae and general symmetry identities. The new family of polynomials introduced here, gives many interesting special cases.
Style APA, Harvard, Vancouver, ISO itp.
2

Corcino, Roberto B., Hassan Jolany, Cristina B. Corcino, and Takao Komatsu. "On Generalized Multi Poly-Euler Polynomials." Fibonacci Quarterly 55, no. 1 (2017): 41–53. http://dx.doi.org/10.1080/00150517.2017.12427790.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Komatsu, Takao, and Florian Luca. "Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials." International Journal of Number Theory 13, no. 02 (2017): 371–91. http://dx.doi.org/10.1142/s1793042117500221.

Pełny tekst źródła
Streszczenie:
By using the restricted and associated Stirling numbers of the first kind, we define the generalized restricted and associated poly-Cauchy polynomials. By using the restricted and associated Stirling numbers of the second kind, we define the generalized restricted and associated poly-Bernoulli polynomials. These polynomials are generalizations of original poly-Cauchy polynomials and original poly-Bernoulli polynomials, respectively. We also study their characteristic and combinatorial properties.
Style APA, Harvard, Vancouver, ISO itp.
4

Bilgic, Secil, and Veli Kurt. "On generalized q-poly-Bernoulli numbers and polynomials." Filomat 34, no. 2 (2020): 515–20. http://dx.doi.org/10.2298/fil2002515b.

Pełny tekst źródła
Streszczenie:
Many mathematicians in ([1],[2],[5],[14],[20]) introduced and investigated the generalized q-Bernoulli numbers and polynomials and the generalized q-Euler numbers and polynomials and the generalized q-Gennochi numbers and polynomials. Mahmudov ([15],[16]) considered and investigated the q-Bernoulli polynomials B(?)n,q(x,y) in x,y of order ? and the q-Euler polynomials E(?) n,q (x,y)in x,y of order ?. In this work, we define generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in x,y of order ?. We give new relations between the generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in x,y of order ? and the generalized q-poly-Euler polynomials ?[k,?] n,q (x,y) in x,y of order ? and the q-Stirling numbers of the second kind S2,q(n,k).
Style APA, Harvard, Vancouver, ISO itp.
5

Komatsu, Takao, and Genki Shibukawa. "Poly-Cauchy polynomials and generalized Bernoulli polynomials." Acta Scientiarum Mathematicarum 80, no. 34 (2014): 373–88. http://dx.doi.org/10.14232/actasm-013-761-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kim, Taekyun, and Dae Kim. "A note on degenerate multi-poly-Bernoulli numbers and polynomials." Applicable Analysis and Discrete Mathematics, no. 00 (2022): 5. http://dx.doi.org/10.2298/aadm200510005k.

Pełny tekst źródła
Streszczenie:
In this paper, we consider the degenerate multi-poly-Bernoulli numbers and polynomials which are defined by means of the multiple polylogarithms and degenerate versions of the multi-poly-Bernoulli numbers and polynomials. We investigate some properties for those numbers and polynomials. In addition, we give some identities and relations for the degenerate multi-poly- Bernoulli numbers and polynomials.
Style APA, Harvard, Vancouver, ISO itp.
7

Muhiuddin, G., W. A. Khan, U. Duran, and D. Al-Kadi. "Some Identities of the Degenerate Multi-Poly-Bernoulli Polynomials of Complex Variable." Journal of Function Spaces 2021 (June 1, 2021): 1–8. http://dx.doi.org/10.1155/2021/7172054.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce degenerate multi-poly-Bernoulli polynomials and derive some identities of these polynomials. We give some relationship between degenerate multi-poly-Bernoulli polynomials degenerate Whitney numbers and Stirling numbers of the first kind. Moreover, we define degenerate multi-poly-Bernoulli polynomials of complex variables, and then, we derive several properties and relations.
Style APA, Harvard, Vancouver, ISO itp.
8

Kargin, Levent, Mehmet Cenkci, Ayhan Dil, and Mumun Can. "Generalized harmonic numbers via poly-Bernoulli polynomials." Publicationes Mathematicae Debrecen 100, no. 3-4 (2022): 365–86. http://dx.doi.org/10.5486/pmd.2022.9074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kurt, Veli. "On the generalized q-poly-Euler polynomials of the second kind." Filomat 34, no. 2 (2020): 475–82. http://dx.doi.org/10.2298/fil2002475k.

Pełny tekst źródła
Streszczenie:
In this work, we define the generalized q-poly-Euler numbers of the second kind of order ? and the generalized q-poly-Euler polynomials of the second kind of order ?. We investigate some basic properties for these polynomials and numbers. In addition, we obtain many identities, relations including the Roger-Sz?go polynomials, the Al-Salam Carlitz polynomials, q-analogue Stirling numbers of the second kind and two variable Bernoulli polynomials.
Style APA, Harvard, Vancouver, ISO itp.
10

Bayad, Abdelmejid, and Yoshinori Hamahata. "Multiple polylogarithms and multi-poly-Bernoulli polynomials." Functiones et Approximatio Commentarii Mathematici 46, no. 1 (2012): 45–61. http://dx.doi.org/10.7169/facm/2012.46.1.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Generalized Multi poly-Bernoulli polynomials"

1

Corcino, Roberto B. "Multi Poly-Bernoulli and Multi Poly-Euler Polynomials." In Applied Mathematical Analysis: Theory, Methods, and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99918-0_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii