Gotowa bibliografia na temat „Generalized Multi poly-Euler polynomials”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Generalized Multi poly-Euler polynomials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Generalized Multi poly-Euler polynomials"

1

Corcino, Roberto B., Hassan Jolany, Cristina B. Corcino, and Takao Komatsu. "On Generalized Multi Poly-Euler Polynomials." Fibonacci Quarterly 55, no. 1 (2017): 41–53. http://dx.doi.org/10.1080/00150517.2017.12427790.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Taekyun, Dae San Kim, Jin-Woo Park, and Jongkyum Kwon. "A Note on Multi-Euler–Genocchi and Degenerate Multi-Euler–Genocchi Polynomials." Journal of Mathematics 2023 (August 26, 2023): 1–7. http://dx.doi.org/10.1155/2023/3810046.

Pełny tekst źródła
Streszczenie:
Recently, the generalized Euler–Genocchi and generalized degenerate Euler–Genocchi polynomials are introduced. The aim of this note is to study the multi-Euler–Genocchi and degenerate multi-Euler–Genocchi polynomials which are defined by means of the multiple logarithm and generalize, respectively, the generalized Euler–Genocchi and generalized degenerate Euler–Genocchi polynomials. Especially, we express the former by the generalized Euler–Genocchi polynomials, the multi-Stirling numbers of the first kind and Stirling numbers of the second kind, and the latter by the generalized degenerate Eu
Style APA, Harvard, Vancouver, ISO itp.
3

El-Desouky, Beih, Rabab Gomaa, and Alia Magar. "The multi-variable unified family of generalized Apostol-type polynomials." Applicable Analysis and Discrete Mathematics, no. 00 (2020): 15. http://dx.doi.org/10.2298/aadm190405015e.

Pełny tekst źródła
Streszczenie:
The aim of this paper is to investigate and give a new family of multi-variable Apostol-type polynomials. This family is related to Apostol-Euler, Apostol-Bernoulli, Apostol-Genocchi and Apostol-laguerre polynomials. Moreover, we derive some implicit summation formulae and general symmetry identities. The new family of polynomials introduced here, gives many interesting special cases.
Style APA, Harvard, Vancouver, ISO itp.
4

Sweilam, N. H., S. M. AL-Mekhlafi, and D. Baleanu. "Efficient numerical treatments for a fractional optimal control nonlinear Tuberculosis model." International Journal of Biomathematics 11, no. 08 (2018): 1850115. http://dx.doi.org/10.1142/s1793524518501152.

Pełny tekst źródła
Streszczenie:
In this paper, the general nonlinear multi-strain Tuberculosis model is controlled using the merits of Jacobi spectral collocation method. In order to have a variety of accurate results to simulate the reality, a fractional order model of multi-strain Tuberculosis with its control is introduced, where the derivatives are adopted from Caputo’s definition. The shifted Jacobi polynomials are used to approximate the optimality system. Subsequently, Newton’s iterative method will be used to solve the resultant nonlinear algebraic equations. A comparative study of the values of the objective functio
Style APA, Harvard, Vancouver, ISO itp.
5

Araci, Serkan, Mumtaz Riyasat, Shahid Wani, and Subuhi Khan. "A New Class of Hermite-Apostol Type Frobenius-Euler Polynomials and Its Applications." Symmetry 10, no. 11 (2018): 652. http://dx.doi.org/10.3390/sym10110652.

Pełny tekst źródła
Streszczenie:
The article is written with the objectives to introduce a multi-variable hybrid class, namely the Hermite–Apostol-type Frobenius–Euler polynomials, and to characterize their properties via different generating function techniques. Several explicit relations involving Hurwitz–Lerch Zeta functions and some summation formulae related to these polynomials are derived. Further, we establish certain symmetry identities involving generalized power sums and Hurwitz–Lerch Zeta functions. An operational view for these polynomials is presented, and corresponding applications are given. The illustrative s
Style APA, Harvard, Vancouver, ISO itp.
6

Bilgic, Secil, and Veli Kurt. "On generalized q-poly-Bernoulli numbers and polynomials." Filomat 34, no. 2 (2020): 515–20. http://dx.doi.org/10.2298/fil2002515b.

Pełny tekst źródła
Streszczenie:
Many mathematicians in ([1],[2],[5],[14],[20]) introduced and investigated the generalized q-Bernoulli numbers and polynomials and the generalized q-Euler numbers and polynomials and the generalized q-Gennochi numbers and polynomials. Mahmudov ([15],[16]) considered and investigated the q-Bernoulli polynomials B(?)n,q(x,y) in x,y of order ? and the q-Euler polynomials E(?) n,q (x,y)in x,y of order ?. In this work, we define generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in x,y of order ?. We give new relations between the generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in
Style APA, Harvard, Vancouver, ISO itp.
7

Kurt, Veli. "On the generalized q-poly-Euler polynomials of the second kind." Filomat 34, no. 2 (2020): 475–82. http://dx.doi.org/10.2298/fil2002475k.

Pełny tekst źródła
Streszczenie:
In this work, we define the generalized q-poly-Euler numbers of the second kind of order ? and the generalized q-poly-Euler polynomials of the second kind of order ?. We investigate some basic properties for these polynomials and numbers. In addition, we obtain many identities, relations including the Roger-Sz?go polynomials, the Al-Salam Carlitz polynomials, q-analogue Stirling numbers of the second kind and two variable Bernoulli polynomials.
Style APA, Harvard, Vancouver, ISO itp.
8

Khan, Waseem Ahmad, Mehmet Acikgoz, and Ugur Duran. "Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials." Symmetry 12, no. 10 (2020): 1691. http://dx.doi.org/10.3390/sym12101691.

Pełny tekst źródła
Streszczenie:
Kim and Kim (Russ. J. Math. Phys. 26, 2019, 40-49) introduced polyexponential function as an inverse to the polylogarithm function and by this, constructed a new type poly-Bernoulli polynomials. Recently, by using the polyexponential function, a number of generalizations of some polynomials and numbers have been presented and investigated. Motivated by these researches, in this paper, multi-poly-Euler polynomials are considered utilizing the degenerate multiple polyexponential functions and then, their properties and relations are investigated and studied. That the type 2 degenerate multi-poly
Style APA, Harvard, Vancouver, ISO itp.
9

Corcino, Roberto, Cristina Corcino, and Waseem Khan. "On Type 2 Degenerate Poly-Frobenius-Euler Polynomials." Recoletos Multidisciplinary Research Journal 13, no. 1 (2025): 13–31. https://doi.org/10.32871/rmrj2513.01.02.

Pełny tekst źródła
Streszczenie:
Background: This paper introduces a class of special polynomials called Type 2 degenerate poly-Frobenius-Euler polynomials, defined using the polyexponential function. Motivated by the expanding theory of degenerate versions of classical polynomials, the paper seeks to enrich the mathematical landscape by constructing generalized structures with deeper combinatorial and analytic properties. Methods: The study employs the method of generating functions combined with Cauchy's rule for the product of two series to derive explicit formulas and identities, enabling systematic manipulation of series
Style APA, Harvard, Vancouver, ISO itp.
10

Jolany, Hassan, Roberto B. Corcino, and Takao Komatsu. "More properties on multi-poly-Euler polynomials." Boletín de la Sociedad Matemática Mexicana 21, no. 2 (2015): 149–62. http://dx.doi.org/10.1007/s40590-015-0061-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Generalized Multi poly-Euler polynomials"

1

Corcino, Roberto B. "Multi Poly-Bernoulli and Multi Poly-Euler Polynomials." In Applied Mathematical Analysis: Theory, Methods, and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99918-0_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!