Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Generalized semi pseudo Ricci symmetric manifold.

Artykuły w czasopismach na temat „Generalized semi pseudo Ricci symmetric manifold”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 28 najlepszych artykułów w czasopismach naukowych na temat „Generalized semi pseudo Ricci symmetric manifold”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chaturvedi, B. B., and Kunj Bihari Kaushik. "Study of a Projective Ricci Semi-symmetric Nearly Kaehler Manifold." Asian Journal of Mathematics and Computer Research 30, no. 3 (2023): 19–29. http://dx.doi.org/10.56557/ajomcor/2023/v30i38324.

Pełny tekst źródła
Streszczenie:
We inaugurate a new curvature properties of projective curvature tensor in nearly Kaehler manifold. We defined projective Ricci semi-symmetric quasi-Einstein nearly Kaehler manifold, Projective Ricci semisymmetric generalised quasi-Einstein nearly Kaehler manifold and a Projective Ricci semi-symmetric pseudo generalised quasi-Einstein nearly Kaehler manifold and also found some results in the manifold.
Style APA, Harvard, Vancouver, ISO itp.
2

Naik, Shweta, та H. G. Nagaraja. "EQUIVALENT STRUCTURES ON N (κ) MANIFOLD ADMITTING GENERALIZED TANAKA WEBSTER CONNECTION". South East Asian J. of Mathematics and Mathematical Sciences 18, № 03 (2022): 193–206. http://dx.doi.org/10.56827/seajmms.2022.1803.16.

Pełny tekst źródła
Streszczenie:
The main objective of the present paper is to study the equivalence of semi-symmetric and pseudo-symmetric conditions imposing on different curvature tensors in N (κ) manifolds admitting generalized Tanaka Webster ( ˜) connection. Classification is done according as expression of Ricci tensor and scalar curvature with respect to ∇˜. Finally an example is given.
Style APA, Harvard, Vancouver, ISO itp.
3

De, Krishnendu, Changhwa Woo, and Uday De. "Geometric and physical characterizations of a spacetime concerning a novel curvature tensor." Filomat 38, no. 10 (2024): 3535–46. https://doi.org/10.2298/fil2410535d.

Pełny tekst źródła
Streszczenie:
In this article, we introduce ?-concircular curvature tensor, a new tensor that generalizes the concircular curvature tensor. At first, we produce a few fundamental geometrical properties of ?-concircular curvature tensor and pseudo ?-concircularly symmetric manifolds and provide some inter-esting outcomes. Besides, we investigate ?-concircularly flat spacetimes and establish some significant results about Minkowski spacetime, RW-spacetime, and projective collineation. Moreover, we show that if a ?-concircularly flat spacetime admits a Ricci bi-conformal vector field, then it is either Petrov type N or conformally flat. Moreover, we consider pseudo ? concircularly symmetric spacetime with Codazzi type of Ricci tensor and prove that the spacetime is of Petrov types I, D or O and the spacetime turns into a RW spacetime. Also, we establish that in a pseudo ? concircularly symmetric spacetime with harmonic ?-concircular curvature tensor, the semi-symmetric energy momentum tensor and Ricci semi-symmetry are equivalent. At last, we produce a non-trivial example to validate the existence of4 a (PCS) manifold.
Style APA, Harvard, Vancouver, ISO itp.
4

Shaikh, A. A., C. Özgür, and S. K. Jana. "On generalized pseudo Ricci symmetric manifolds admitting semi-symmetric metric connection." Proceedings of the Estonian Academy of Sciences 59, no. 3 (2010): 207. http://dx.doi.org/10.3176/proc.2010.3.03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mofarreh, Fatemah, Krishnendu De та Uday De. "Characterizations of a spacetime admitting ψ-conformal curvature tensor". Filomat 37, № 30 (2023): 10265–74. http://dx.doi.org/10.2298/fil2330265m.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce ?-conformal curvature tensor, a new tensor that generalizes the conformal curvature tensor. At first, we deduce a few fundamental geometrical properties of ?-conformal curvature tensor and pseudo ?-conharmonically symmetric manifolds and produce some interesting outcomes. Moreover, we study ?-conformally flat perfect fluid spacetimes. As a consequence, we establish a number of significant theorems about Minkowski spacetime, GRW-spacetime, projective collineation. Moreover, we show that if a?-conformally flat spacetime admits a Ricci bi-conformal vector field, then it is either conformally flat or of Petrov type N. At last, we consider pseudo?conformally symmetric spacetime admitting harmonic ?-conformal curvature tensor and prove that the semi-symmetric energy momentum tensor and Ricci semi-symmetry are equivalent and also, the Ricci collineation and matter collineation are equivalent.
Style APA, Harvard, Vancouver, ISO itp.
6

De, U. C., Yanling Han, and Krishanu Mandal. "On para-sasakian manifolds satisfying certain curvature conditions." Filomat 31, no. 7 (2017): 1941–47. http://dx.doi.org/10.2298/fil1707941d.

Pełny tekst źródła
Streszczenie:
In this paper, we investigate Ricci pseudo-symmetric and Ricci generalized pseudo-symmetric P-Sasakian manifolds. Next we study P-Sasakian manifolds satisfying the curvature condition S ? R = 0. Finally, we give an example of a 5-dimensional P-Sasakian manifold to verify some results.
Style APA, Harvard, Vancouver, ISO itp.
7

Praveena, M. M., and C. S. Bagewadi. "On generalized complex space forms satisfying certain curvature conditions." Carpathian Mathematical Publications 8, no. 2 (2016): 284–94. http://dx.doi.org/10.15330/cmp.8.2.284-294.

Pełny tekst źródła
Streszczenie:
We study Ricci soliton $(g,V,\lambda)$ of generalized complex space forms when the Riemannian, Bochner and $W_{2}$ curvature tensors satisfy certain curvature conditions like semi-symmetric, Einstein semi-symmetric, Ricci pseudo symmetric and Ricci generalized pseudo symmetric. In this study it is shown that shrinking, steady and expansion of the generalized complex space forms depends on the solenoidal property of vector $V$. Also we prove that generalized complex space form with conservative Bochner curvature tensor is constant scalar curvature.
Style APA, Harvard, Vancouver, ISO itp.
8

Wu, Tong, and Yong Wang. "Generalized Semi-Symmetric Non-Metric Connections of Non-Integrable Distributions." Symmetry 13, no. 1 (2021): 79. http://dx.doi.org/10.3390/sym13010079.

Pełny tekst źródła
Streszczenie:
In this work, the cases of non-integrable distributions in a Riemannian manifold with the first generalized semi-symmetric non-metric connection and the second generalized semi-symmetric non-metric connection are discussed. We obtain the Gauss, Codazzi, and Ricci equations in both cases. Moreover, Chen’s inequalities are also obtained in both cases. Some new examples based on non-integrable distributions in a Riemannian manifold with generalized semi-symmetric non-metric connections are proposed.
Style APA, Harvard, Vancouver, ISO itp.
9

Prakasha, Doddabhadrappla Gowda, Nasser Bin Turki, Mathad Veerabhadraswamy Deepika та İnan Ünal. "On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β)". Mathematics 12, № 18 (2024): 2915. http://dx.doi.org/10.3390/math12182915.

Pełny tekst źródła
Streszczenie:
In the current article, we examine Lorentzian para-Kenmotsu (shortly, LP-Kenmotsu) manifolds with regard to the generalized symmetric metric connection ∇G of type (α,β). First, we obtain the expressions for curvature tensor, Ricci tensor and scalar curvature of an LP-Kenmotsu manifold with regard to the connection ∇G. Next, we analyze LP-Kenmotsu manifolds equipped with the connection ∇G that are locally symmetric, Ricci semi-symmetric, and φ-Ricci symmetric and also demonstrated that in all these situations the manifold is an Einstein one with regard to the connection ∇G. Moreover, we obtain some conclusions about projectively flat, projectively semi-symmetric and φ-projectively flat LP-Kenmotsu manifolds concerning the connection ∇G along with several consequences through corollaries. Ultimately, we provide a 5-dimensional LP-Kenmotsu manifold example to validate the derived expressions.
Style APA, Harvard, Vancouver, ISO itp.
10

Khan, Mohammad Nazrul Islam, Fatemah Mofarreh, and Abdul Haseeb. "Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection." Symmetry 15, no. 3 (2023): 753. http://dx.doi.org/10.3390/sym15030753.

Pełny tekst źródła
Streszczenie:
The purpose of this study is to evaluate the curvature tensor and the Ricci tensor of a P-Sasakian manifold with respect to the quarter-symmetric metric connection on the tangent bundle TM. Certain results on a semisymmetric P-Sasakian manifold, generalized recurrent P-Sasakian manifolds, and pseudo-symmetric P-Sasakian manifolds on TM are proved.
Style APA, Harvard, Vancouver, ISO itp.
11

Uysal, S. Aynur, and Hülya Bağdatlı Yılmaz. "Some Properties of Generalized Einstein Tensor for a Pseudo-Ricci Symmetric Manifold." Advances in Mathematical Physics 2020 (July 1, 2020): 1–4. http://dx.doi.org/10.1155/2020/6831650.

Pełny tekst źródła
Streszczenie:
The object of the paper is to study some properties of the generalized Einstein tensor GX,Y which is recurrent and birecurrent on pseudo-Ricci symmetric manifolds PRSn. Considering the generalized Einstein tensor GX,Y as birecurrent but not recurrent, we state some theorems on the necessary and sufficient conditions for the birecurrency tensor of GX,Y to be symmetric.
Style APA, Harvard, Vancouver, ISO itp.
12

Haji-Badali, Ali, and Amirhesam Zaeim. "Commutative curvature operators over four-dimensional homogeneous manifolds." International Journal of Geometric Methods in Modern Physics 12, no. 10 (2015): 1550123. http://dx.doi.org/10.1142/s0219887815501236.

Pełny tekst źródła
Streszczenie:
Four-dimensional pseudo-Riemannian homogeneous spaces whose isotropy is non-trivial with commuting curvature operators have been studied. The only example of homogeneous Einstein four-manifold which is curvature-Ricci commuting but not semi-symmetric has been presented. Non-trivial examples of semi-symmetric homogeneous four-manifolds which are not locally symmetric, also Jacobi–Jacobi commuting manifolds which are not flat have been presented.
Style APA, Harvard, Vancouver, ISO itp.
13

Gül, İlhan, and Elif Özkara Canfes. "On quasi-Einstein Weyl manifolds." International Journal of Geometric Methods in Modern Physics 14, no. 09 (2017): 1750122. http://dx.doi.org/10.1142/s0219887817501225.

Pełny tekst źródła
Streszczenie:
In this work, first, we define quasi-Einstein Weyl manifold which is one of the generalization of Einstein–Weyl manifold. Then, we prove its existence and construct an example. Moreover, we consider quasi-Einstein Weyl manifolds with semi-symmetric and Ricci-quarter symmetric connections. Finally, we examine conformal and generalized concircular mappings of quasi-Einstein Weyl manifolds and prove that quasi-Einstein Weyl manifolds are invariant under the generalized concircular mappings.
Style APA, Harvard, Vancouver, ISO itp.
14

Velimirović, Ljubica, Pradip Majhi, and Uday Chand De. "Almost pseudo-Q-symmetric semi-Riemannian manifolds." International Journal of Geometric Methods in Modern Physics 15, no. 07 (2018): 1850117. http://dx.doi.org/10.1142/s0219887818501177.

Pełny tekst źródła
Streszczenie:
The object of the present paper is to study almost pseudo-[Formula: see text]-symmetric manifolds [Formula: see text]. Some geometric properties have been studied which recover some known results of pseudo [Formula: see text]-symmetric manifolds. We obtain a necessary and sufficient condition for the [Formula: see text]-curvature tensor to be recurrent in [Formula: see text]. Also, we provide several interesting results. Among others, we prove that a Ricci symmetric [Formula: see text] is an Einstein manifold under certain condition. Moreover we deal with [Formula: see text]-flat perfect fluid, dust fluid and radiation era perfect fluid spacetimes respectively. As a consequence, we obtain some important results. Finally, we consider [Formula: see text]-spacetimes.
Style APA, Harvard, Vancouver, ISO itp.
15

Diallo, Abdoul Salam, and Punam Gupta. "Four-Dimensional Semi-Riemannian Szabó Manifolds." Journal of Mathematics 2020 (December 31, 2020): 1–5. http://dx.doi.org/10.1155/2020/6663361.

Pełny tekst źródła
Streszczenie:
In this paper, we prove that the deformed Riemannian extension of any affine Szabó manifold is a Szabó pseudo-Riemannian metric and vice versa. We prove that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only if the affine surface is Szabó. We also find the necessary and sufficient condition for the affine Szabó surface to be recurrent. We prove that, for an affine Szabó recurrent surface, the recurrence covector of a recurrence tensor is not locally a gradient.
Style APA, Harvard, Vancouver, ISO itp.
16

Wang, Yaning, and Wenjie Wang. "Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions." Filomat 30, no. 14 (2016): 3807–16. http://dx.doi.org/10.2298/fil1614807w.

Pełny tekst źródła
Streszczenie:
In this paper, it is proved that on a generalized (k,?)'-almost Kenmotsu manifold M2n+1 of dimension 2n + 1, n > 1, the conditions of local symmetry, semi-symmetry, pseudo-symmetry and quasi weak-symmetry are equivalent and this is also equivalent to that M2n+1 is locally isometric to either the hyperbolic space H2n+1(-1) or the Riemannian product Hn+1(-4)xRn. Moreover, we also prove that a generalized (k,?)-almost Kenmotsu manifold of dimension 2n + 1, n > 1, is pseudo-symmetric if and only if it is locally isometric to the hyperbolic space H2n+1(-1).
Style APA, Harvard, Vancouver, ISO itp.
17

Kumar, Rajesh, Sameh Shenawy, Lalnunenga Colney, and Nasser Bin Turki. "Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds." AIMS Mathematics 9, no. 11 (2024): 30364–83. http://dx.doi.org/10.3934/math.20241465.

Pełny tekst źródła
Streszczenie:
<p>This work studies the complete lifts of Kenmotsu manifolds associated with the generalized Tanaka-Webster connection (GTWC) in the tangent bundle. Using the GTWC, this study explores the complete lifts of various curvature tensors and geometric structures from Kenmotsu manifolds to their tangent bundles. Specifically, it examines the complete lifts of Ricci semi-symmetry, the projective curvature tensor, $ \Phi $-projectively semi-symmetric structures, the conharmonic curvature tensor, the concircular curvature tensor, and the Weyl conformal curvature tensor. Additionally, the research delves into the complete lifts of Ricci solitons on Kenmotsu manifolds with the GTWC within the tangent bundle framework, providing new insights into their geometric properties and symmetries in the lifted space. The data on the complete lifts of the Ricci soliton in Kenmotsu manifolds associated with the GTWC in the tangent bundle are also investigated. An example of the complete lifts of a $ 5 $-dimensional Kenmotsu manifold is also included.</p>
Style APA, Harvard, Vancouver, ISO itp.
18

Chaubey, S. K., and Y. J. Suh. "Characterizations of Lorentzian manifolds." Journal of Mathematical Physics 63, no. 6 (2022): 062501. http://dx.doi.org/10.1063/5.0090046.

Pełny tekst źródła
Streszczenie:
The focus of this paper is to characterize the Lorentzian manifolds equipped with a semi-symmetric non-metric ρ-connection [briefly, [Formula: see text]]. The conditions for a Lorentzian manifold to be a generalized Robertson–Walker spacetime are established and vice versa. We prove that an n-dimensional compact [Formula: see text] is geodesically complete. We also study the properties of almost Ricci solitons and gradient almost Ricci solitons on Lorentzian manifolds and Yang pure space, respectively. Finally, we study the properties of semisymmetric [Formula: see text], and it is proven that [Formula: see text] is semisymmetric if and only if it is a Robertson–Walker spacetime.
Style APA, Harvard, Vancouver, ISO itp.
19

Kalyan, Halder, and Bhattacharyya Arindam. "Quarter Symmetric Metric Connection on Generalized Semi Pseudo Ricci Symmetric Manifold." November 30, 2015. https://doi.org/10.5281/zenodo.826671.

Pełny tekst źródła
Streszczenie:
Object of this paper is to find some properties of generalized semi pseudo Ricci symmetric manifold (denoted by <em>G(SPRS)</em><sub>n</sub> ) admitting quarter symmetric metric connection. At last we have given an example of this manifold.
Style APA, Harvard, Vancouver, ISO itp.
20

Somashekhara, P., M. M. Praveena та M. S. Siddesha. "B-Semi Symmetric Properties on Lorentzian α Sasakian Manifolds". Journal of Mines, Metals and Fuels, 20 грудня 2024, 241–45. https://doi.org/10.18311/jmmf/2023/47303.

Pełny tekst źródła
Streszczenie:
We study B-semi symmetric, B-pseudo-symmetric, Ricci-pseudo-symmetric and B-Ricci generalized pseudo-symmetric of Lorentzian α-Sasakian Manifolds and additionally, we provide conditions that determine whether the solutions of the Ricci flows manifest as steady, expanding, or shrinking.
Style APA, Harvard, Vancouver, ISO itp.
21

Benroummane, Abderrazzak. "Some Results on Semi-Symmetric Spaces." International Journal of Computational Geometry & Applications, November 2, 2023, 1–20. http://dx.doi.org/10.1142/s0218195923500024.

Pełny tekst źródła
Streszczenie:
We give some properties of semi-symmetric pseudo-Riemannian manifolds as an indecomposable irreducible Ricci pseudo-Riemannian manifold (i.e. the minimal polynomial of its Ricci operator is irreducible) is semi symmetric if and only if it is locally symmetric. We also show that any semi-symmetric pseudo-Riemannian manifold will be foliated. Moreover, if the metric is Lorentzian, the Ricci operator has only real eigenvalues and more precisely, on each leaf, it is diagonalizable with at most a single non zero eigenvalue or isotropic.
Style APA, Harvard, Vancouver, ISO itp.
22

Baishya, K. K., and A. Biswas. "Study on generalised pseudo (Ricci) symmetric Sasakian manifold admitting general connection." Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science, January 20, 2020, 233–46. http://dx.doi.org/10.31926/but.mif.2019.12.61.2.4.

Pełny tekst źródła
Streszczenie:
The object of the present paper is to study the generalized pseudo (Ricci) symmetric Sasakian manifold with respect to a new connection named general connection. The general connection has the flavor of the quarter-symmetric connection, generalized Tanaka-Webster connection, Zamkovoy, and Schouten- van Kampen connection. The existence of generalized pseudo (Ricci) symmetric Sasakian manifold with respect to general connection is ensured by an example.
Style APA, Harvard, Vancouver, ISO itp.
23

Venkatesh, Venkatesha, Arasaiah Arasaiah, Vishnuvardhana Srivaishnava Vasudeva, and Naveen Kumar Rahuthanahalli Thimmegowda. "Some Symmetric Properties of Kenmotsu Manifolds Admitting Semi-Symmetric Metric Connection." Facta Universitatis, Series: Mathematics and Informatics, March 13, 2019, 35. http://dx.doi.org/10.22190/fumi1901035v.

Pełny tekst źródła
Streszczenie:
The object of the present paper is to study some symmetric propertiesof Kenmotsu manifold endowed with a semi-symmetric metric connection. Here weconsider pseudo-symmetric, Ricci pseudo-symmetric, projective pseudo-symmetric and -projective semi-symmetric Kenmotsu manifold with respect to semi-symmetric metric connection. Finally, we provide an example of 3-dimensional Kenmotsu manifold admitting a semi-symmetric metric connection which verify our results.
Style APA, Harvard, Vancouver, ISO itp.
24

Shukla, N. V. C., and Komal Anand. "ON HYPERBOLIC KENMOTSU MANIFOLDS WITH THE GENERALIZED SYMMETRIC METRIC CONNECTION." South East Asian Journal of Mathematics and Mathematical Sciences 20, no. 3 (2024). https://doi.org/10.56827/seajmms.2024.2003.23.

Pełny tekst źródła
Streszczenie:
In this paper, we define Hyperbolic Kenmotsu manifolds and the generalized symmetric metric connection on this manifold. Further we discuss curvature tensor and Ricci curvature tensor with respect to the generalized symmetric metric connection. We also study Ricci semi-symmetric 3-dim Hyperbolic Kenmotsu manifold with the generalized symmetric metric connection and Projectively flat manifold with respect to the generalized symmetric metric connection.
Style APA, Harvard, Vancouver, ISO itp.
25

Belkhelfa, Mohamed, and Fatima Zohra Kadi. "Symmetry properties of complex contact space form." Asian-European Journal of Mathematics, October 13, 2019, 2050157. http://dx.doi.org/10.1142/s1793557120501570.

Pełny tekst źródła
Streszczenie:
It is well known that a Sasakian space form is pseudo-symmetric [M. Belkhelfa, R. Deszcz and L. Verstraelen, Symmetry properties of Sasakian space-forms, Soochow J. Math. 31(4) (2005) 611–616], therefore it is Ricci-pseudo-symmetric. In this paper, we proved that a normal complex contact manifold is Ricci-semi-symmetric if and only if it is an Einstein manifold; moreover, we showed that a complex contact space form [Formula: see text] with constant [Formula: see text]-sectional curvature [Formula: see text] is properly Ricci-pseudo-symmetric [Formula: see text] if and only if [Formula: see text]; in this case [Formula: see text]. We gave an example of properly Ricci-pseudo-symmetric complex contact space form. On the other hand, we proved the non-existence of proper pseudo-symmetric ([Formula: see text]) complex contact space form [Formula: see text]
Style APA, Harvard, Vancouver, ISO itp.
26

Yadav, Sarvesh Kumar, Shyamal Kumar Hui, Mohd Iqbal, Pradip Mandal, and Mohd Aslam. "CR-submanifolds of SQ-Sasakian manifold." Tamkang Journal of Mathematics, July 29, 2022. http://dx.doi.org/10.5556/j.tkjm.54.2023.4656.

Pełny tekst źródła
Streszczenie:
In this paper we discussed CR-submanifold of SQ-Sasakian manifold. Next, we considered Chaki pseudo parallel as well as Deszcz pseudo parallel CR-submanifold of SQ-Sasakian manifold. Further we studied almost Ricci soliton and almost Yamabe soliton with torse forming vector field on CR-subamnifold of SQ-Sasakian manifold using semi-symmetric metric connection.
Style APA, Harvard, Vancouver, ISO itp.
27

Sağlamer, Ayşe Funda, and Aslı Kalkan Altıntaş. "On Generalized Ricci-Recurrent Trans-Sasakian Indefinite Finsler Manifolds." Ikonion Journal of Mathematics, November 26, 2024. https://doi.org/10.54286/ikjm.1494576.

Pełny tekst źródła
Streszczenie:
In this paper generalized Ricci-recurrent trans-Sasakian indefinite Finsler manifolds are studied.These structures are established on the 〖(M^0)〗^h and 〖(M^0)〗^v vector subbundles, where M is an (2n+1) dimensional C^∞ manifold, M^0=〖(M^0)〗^h⊕ 〖(M^0)〗^v is a non-empty open submanifold of TM. F^* is the fundamental Finsler function and〖 F〗^(2n+1)=(M,M^0,F^*) is an indefinite Finsler manifold. We use the Sasaki Finsler metric G=G^H+G^V=g_ij^(F^* ) dx^i⊗dx^j+g_ij^(F^* ) δy^i ⊗δy^i . Furthermore, we give some formulas for α-Sasakian and β-Kenmotsu Finsler manifolds with pseudo-Finsler metric. It is also provided that If ((M^0 )^h,ϕ^H,ξ^H,η^H,G^H ) and (〖(M^0 )^v,ϕ〗^V,ξ^V,η^V,G^V ) are one of the (ε)- α-Sasakian,(ε)-Sasakian, (ε)- β-Kenmotsu and (ε)-Kenmotsu manifolds, which are generalized Ricci- recurrent with cyclic Ricci tensor and non-zero A^H (ξ^H ),〖 A〗^V (ξ^V ) everywhere, then they are Einstein and Ricci symmetric manifolds, where α,β are constant functions defined on (M^0 )^h and (M^0 )^v.
Style APA, Harvard, Vancouver, ISO itp.
28

Rovenski, Vladimir, and Tomasz Zawadzki. "The Mixed Scalar Curvature of Almost-Product Metric-Affine Manifolds, II." Results in Mathematics 76, no. 3 (2021). http://dx.doi.org/10.1007/s00025-021-01465-8.

Pełny tekst źródła
Streszczenie:
AbstractWe continue our study of the mixed Einstein–Hilbert action as a functional of a pseudo-Riemannian metric and a linear connection. Its geometrical part is the total mixed scalar curvature on a smooth manifold endowed with a distribution or a foliation. We develop variational formulas for quantities of extrinsic geometry of a distribution on a metric-affine space and use them to derive Euler–Lagrange equations (which in the case of space-time are analogous to those in Einstein–Cartan theory) and to characterize critical points of this action on vacuum space-time. Together with arbitrary variations of metric and connection, we consider also variations that partially preserve the metric, e.g., along the distribution, and also variations among distinguished classes of connections (e.g., statistical and metric compatible, and this is expressed in terms of restrictions on contorsion tensor). One of Euler–Lagrange equations of the mixed Einstein–Hilbert action is an analog of the Cartan spin connection equation, and the other can be presented in the form similar to the Einstein equation, with Ricci curvature replaced by the new Ricci type tensor. This tensor generally has a complicated form, but is given in the paper explicitly for variations among semi-symmetric connections.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!