Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Germanium poreux.

Artykuły w czasopismach na temat „Germanium poreux”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Germanium poreux”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko та ін. "RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON". Journal of Applied Spectroscopy 89, № 5 (2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Pełny tekst źródła
Streszczenie:
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the comp
Style APA, Harvard, Vancouver, ISO itp.
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll, and Rolf Brendel. "Porous germanium multilayers." physica status solidi (c) 8, no. 6 (2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov, and Sergey Gavrilov. "Germanium electrodeposition into porous silicon for silicon-germanium alloying." Materialia 26 (December 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Amato, G., A. M. Rossi, L. Boarino, and N. Brunetto. "On the role of germanium in porous silicon-germanium luminescence." Philosophical Magazine B 76, no. 3 (1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Li, Xiu, Wei Guo, Qian Wan, and Jianmin Ma. "Porous amorphous Ge/C composites with excellent electrochemical properties." RSC Advances 5, no. 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad, and Mark J. MacLachlan. "Chiral nematic porous germania and germanium/carbon films." Nanoscale 7, no. 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Pełny tekst źródła
Streszczenie:
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO<sub>2</sub>/CNC composites, which were converted to semiconducting, mesoporous GeO<sub>2</sub>/C and Ge/C replicas.
Style APA, Harvard, Vancouver, ISO itp.
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu, and Dihua Wang. "Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach." Journal of Materials Chemistry A 3, no. 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll, and R. Brendel. "Lift-off of Porous Germanium Layers." Journal of The Electrochemical Society 158, no. 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Isaiev, M., S. Tutashkonko, V. Jean, et al. "Thermal conductivity of meso-porous germanium." Applied Physics Letters 105, no. 3 (2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Platonov, Nikolay, Nail Suleimanov, and Valery Bazarov. "Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors." E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Pełny tekst źródła
Streszczenie:
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was th
Style APA, Harvard, Vancouver, ISO itp.
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, et al. "Fabrication and characteristics of porous germanium films." Science and Technology of Advanced Materials 10, no. 6 (2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Steinbach, T., and W. Wesch. "Porous structure formation in ion irradiated germanium." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (January 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fässler, Thomas F. "Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure." Angewandte Chemie International Edition 46, no. 15 (2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong, and Yan Yu. "Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries." Journal of Materials Chemistry A 4, no. 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park, and Chan-Jin Park. "Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries." Journal of Materials Chemistry A 3, no. 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Pełny tekst źródła
Streszczenie:
Germanium oxide (GeO<sub>2</sub>), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
Style APA, Harvard, Vancouver, ISO itp.
16

Choi, Hee Cheul, and Jillian M. Buriak. "Preparation and functionalization of hydride terminated porous germanium." Chemical Communications, no. 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Akkari, Emna, Oualid Touayar, and Brahim Bessais. "Reflectivity, Absorption and Structural Studies of Porous Germanium." Sensor Letters 9, no. 6 (2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Guzmán, David, Miguel Cruz, and Chumin Wang. "Electronic and optical properties of ordered porous germanium." Microelectronics Journal 39, no. 3-4 (2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Miyazaki, S., K. Sakamoto, K. Shiba, and M. Hirose. "Photoluminescence from anodized and thermally oxidized porous germanium." Thin Solid Films 255, no. 1-2 (1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng, and T. C. Chu. "Nanoparticle-Assisted Growth of Porous Germanium Thin Films." Advanced Materials 16, no. 13 (2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, et al. "Observation of nanocrystals in porous stain-etched germanium." physica status solidi (a) 197, no. 1 (2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Grevtsov, N. L. "Synthesis of Silicon-Germanium Film Alloys Based on Chemically Formed Porous Silicon Layers." Doklady BGUIR 23, no. 2 (2025): 20–27. https://doi.org/10.35596/1729-7648-2025-23-2-20-27.

Pełny tekst źródła
Streszczenie:
Formation of silicon-germanium alloy films by electrochemically filling a porous silicon matrix with germanium and subjecting it to rapid thermal processing at 950 °C in argon flow is investigated. Low-porosity porous silicon layers are obtained using metal-assisted chemical etching of lightly-doped silicon wafers. It is shown that the alloy film formed in the employed temperature regime is always located on a residual porous underlayer. The difference in the thickness of the initial porous silicon layer determines not only the thickness of this underlayer, but also that of the alloy film itse
Style APA, Harvard, Vancouver, ISO itp.
23

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev, and Yu N. Osin. "Formation of Porous Germanium Layers by Silver-Ion Implantation." Technical Physics Letters 44, no. 4 (2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, et al. "Porous germanium with copper nanoparticles formed by ion implantation." Vacuum 166 (August 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Rogov, A. M., A. I. Gumarov, L. R. Tagirov, and A. L. Stepanov. "Swelling and sputtering of porous germanium by silver ions." Composites Communications 16 (December 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov. "Porous germanium with Ag nanoparticles formed by ion implantation." Journal of Physics: Conference Series 1092 (September 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais, and J. Benbrahim. "Study and characterization of porous germanium for radiometric measurements." physica status solidi (c) 6, no. 7 (2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin, and A. V. Latyshev. "New method of porous Ge layer fabrication: structure and optical properties." Физика и техника полупроводников 52, no. 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Pełny tekst źródła
Streszczenie:
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2&lt;Ge–NCs&gt; heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2&lt;Ge–NCs&gt; heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, whi
Style APA, Harvard, Vancouver, ISO itp.
29

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev, and V. V. Vorob’ev. "Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation." Nanotechnologies in Russia 12, no. 9-10 (2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo, and S. C. Wang. "Phase transformation and optical characteristics of porous germanium thin film." Thin Solid Films 516, no. 10 (2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Abdullahi, Yusuf Zuntu, and Fatih Ersan. "Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer." RSC Advances 13, no. 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, et al. "Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared." Sensors 22, no. 3 (2022): 844. http://dx.doi.org/10.3390/s22030844.

Pełny tekst źródła
Streszczenie:
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive la
Style APA, Harvard, Vancouver, ISO itp.
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu, and Xiangdong Meng. "Amorphous porous germanium anode with variable dimension for lithium ion batteries." Journal of Materials Science 56, no. 27 (2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev, and Y. N. Osin. "Porous germanium formed by low energy high dose Ag + -ion implantation." Vacuum 152 (June 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Chang, S. S., and R. E. Hummel. "Comparison of photoluminescence behavior of porous germanium and spark-processed Ge." Journal of Luminescence 86, no. 1 (2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, et al. "Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates." ECS Transactions 33, no. 16 (2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Xiao, Ying, Minhua Cao, Ling Ren, and Changwen Hu. "Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance." Nanoscale 4, no. 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe, and Paul C. McIntyre. "Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon." Small 6, no. 9 (2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke, and Xiao-Dong Zhou. "Porous germanium enabled high areal capacity anode for lithium-ion batteries." Composites Part B: Engineering 163 (April 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, et al. "Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection." WSEAS TRANSACTIONS ON ELECTRONICS 15 (December 10, 2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Pełny tekst źródła
Streszczenie:
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal con
Style APA, Harvard, Vancouver, ISO itp.
41

Kartopu, G., and Y. Ekinci. "Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films." Thin Solid Films 473, no. 2 (2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao, and Deren Yang. "Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries." RSC Advances 5, no. 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Akkari, Emna, Oualid Touayar, F. Javier Del Campo, and Josep Montserrat. "Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation." International Journal of Nanotechnology 10, no. 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, et al. "Raman and X-ray studies of nanocrystals in porous stain-etched germanium." Thin Solid Films 437, no. 1-2 (2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wolter, S. D., T. Tyler, and N. M. Jokerst. "Surface characterization of oxide growth on porous germanium films oxidized in air." Thin Solid Films 522 (November 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Yuan, Ye, Jia Liu, Hao Ren, et al. "Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework." Journal of Materials Research 27, no. 10 (2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, et al. "Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon." Journal of Applied Spectroscopy 89, no. 5 (2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, et al. "Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse." Materials Science in Semiconductor Processing 168 (December 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, et al. "Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing." Materials Science in Semiconductor Processing 187 (March 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО, and Л. С. ВОЛКОВА. "STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON." Автометрия 59, no. 6 (2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Pełny tekst źródła
Streszczenie:
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводн
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!