Artykuły w czasopismach na temat „Glial scar formation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glial scar formation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Perez-Gianmarco, Lucila, and Maria Kukley. "Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury." Cells 12, no. 14 (2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Pełny tekst źródłaNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis, and Stefano Pluchino. "The role of neural stem cells in regulating glial scar formation and repair." Cell and Tissue Research 387, no. 3 (2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Pełny tekst źródłaBao, Yi, Luye Qin, Eunhee Kim, et al. "CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation." Journal of Cerebral Blood Flow & Metabolism 32, no. 8 (2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Pełny tekst źródłaZHANG, H., K. UCHIMURA, and K. KADOMATSU. "Brain Keratan Sulfate and Glial Scar Formation." Annals of the New York Academy of Sciences 1086, no. 1 (2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Pełny tekst źródłaRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, et al. "Regulation of RhoA by STAT3 coordinates glial scar formation." Journal of Cell Biology 216, no. 8 (2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Pełny tekst źródłaHu, Rong, Jianjun Zhou, Chunxia Luo, et al. "Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury." Journal of Neurosurgery: Spine 13, no. 2 (2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Pełny tekst źródłaConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh, and Jan M. Schwab. "Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells." Journal of Neurosurgery: Spine 2, no. 3 (2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Pełny tekst źródłaGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, et al. "Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing." Journal of Neurosurgery: Spine 99, no. 2 (2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Pełny tekst źródłaChen, Xuning, and Weiping Zhu. "A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury." Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Pełny tekst źródłaGraboviy, O. M., T. S. Mervinsky, S. I. Savosko, and L. M. Yaremenko. "Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application." Reports of Morphology 30, no. 3 (2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Pełny tekst źródłaChung, Joonho, Moon Hang Kim, Yong Je Yoon, Kil Hwan Kim, So Ra Park, and Byung Hyune Choi. "Effects of granulocyte colony–stimulating factor and granulocyte-macrophage colony–stimulating factor on glial scar formation after spinal cord injury in rats." Journal of Neurosurgery: Spine 21, no. 6 (2014): 966–73. http://dx.doi.org/10.3171/2014.8.spine131090.
Pełny tekst źródłaRooney, Gemma E., Toshiki Endo, Syed Ameenuddin, et al. "Importance of the vasculature in cyst formation after spinal cord injury." Journal of Neurosurgery: Spine 11, no. 4 (2009): 432–37. http://dx.doi.org/10.3171/2009.4.spine08784.
Pełny tekst źródłaClifford, Tanner, Zachary Finkel, Brianna Rodriguez, Adelina Joseph, and Li Cai. "Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration." Cells 12, no. 6 (2023): 853. http://dx.doi.org/10.3390/cells12060853.
Pełny tekst źródłaLiu, Jingzhou, Xin Xin, Jiejie Sun, et al. "Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury." Neural Regeneration Research 19, no. 3 (2023): 629–35. http://dx.doi.org/10.4103/1673-5374.380907.
Pełny tekst źródłaOnodera, Junya, Yuji Ikegaya, and Ryuta Koyama. "Involvement of microglial TRPV4 on glial scar formation." Proceedings for Annual Meeting of The Japanese Pharmacological Society 95 (2022): 1—P—020. http://dx.doi.org/10.1254/jpssuppl.95.0_1-p-020.
Pełny tekst źródłaSutin, Jerome, та Ronald Griffith. "β-Adrenergic Receptor Blockade Suppresses Glial Scar Formation". Experimental Neurology 120, № 2 (1993): 214–22. http://dx.doi.org/10.1006/exnr.1993.1056.
Pełny tekst źródłaWang, Haijun, Guobin Song, Haoyu Chuang, et al. "Portrait of glial scar in neurological diseases." International Journal of Immunopathology and Pharmacology 31 (January 2018): 205873841880140. http://dx.doi.org/10.1177/2058738418801406.
Pełny tekst źródłaSofroniew, Michael V. "Molecular dissection of reactive astrogliosis and glial scar formation." Trends in Neurosciences 32, no. 12 (2009): 638–47. http://dx.doi.org/10.1016/j.tins.2009.08.002.
Pełny tekst źródłaFu, Xiongjie, Yingfeng Wan, Ya Hua, Guohua Xi, and Richard F. Keep. "Characteristics of Scar Formation After Intracerebral Hemorrhage in Aged Rats: Effects of Deferoxamine." Cells 14, no. 15 (2025): 1127. https://doi.org/10.3390/cells14151127.
Pełny tekst źródłaRodriguez-Grande, Beatriz, Matimba Swana, Loan Nguyen, et al. "The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury." Journal of Cerebral Blood Flow & Metabolism 34, no. 3 (2013): 480–88. http://dx.doi.org/10.1038/jcbfm.2013.224.
Pełny tekst źródłaKorte, G. E., M. Marko, and G. Hageman. "High-voltage electron microscopy of subretinal scar formation." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 1 (1992): 486–87. http://dx.doi.org/10.1017/s0424820100122836.
Pełny tekst źródłaLi, Xin, Yan Qian, Wanling Shen, et al. "Mechanism of SET8 Activates the Nrf2-KEAP1-ARE Signaling Pathway to Promote the Recovery of Motor Function after Spinal Cord Injury." Mediators of Inflammation 2023 (March 10, 2023): 1–13. http://dx.doi.org/10.1155/2023/4420592.
Pełny tekst źródłaCarvalho, Juliana Casanovas de, César Augusto Abreu-Pereira, Lucas Cauê da Silva Assunção, Rosana Costa Casanovas, Ana Lucia Abreu-Silva, and Matheus Levi Tajra Feitosa. "Correlation of Nogo A release with glia scar formation in spinal cord injury." Research, Society and Development 10, no. 6 (2021): e25410615688. http://dx.doi.org/10.33448/rsd-v10i6.15688.
Pełny tekst źródłaBadan, I., B. Buchhold, A. Hamm, et al. "Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery." Journal of Cerebral Blood Flow & Metabolism 23, no. 7 (2003): 845–54. http://dx.doi.org/10.1097/01.wcb.0000071883.63724.a7.
Pełny tekst źródłaPekny, Milos, Clas B. Johansson, Camilla Eliasson, et al. "Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin." Journal of Cell Biology 145, no. 3 (1999): 503–14. http://dx.doi.org/10.1083/jcb.145.3.503.
Pełny tekst źródłaWiemann, Susanne, Jacqueline Reinhard, and Andreas Faissner. "Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation." Biochemical Society Transactions 47, no. 6 (2019): 1651–60. http://dx.doi.org/10.1042/bst20190081.
Pełny tekst źródłaHuang, Lijie, Zhe-Bao Wu, Qichuan ZhuGe, et al. "Glial Scar Formation Occurs in the Human Brain after Ischemic Stroke." International Journal of Medical Sciences 11, no. 4 (2014): 344–48. http://dx.doi.org/10.7150/ijms.8140.
Pełny tekst źródłaBeach, Krista M., Jianbo Wang, and Deborah C. Otteson. "Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina." Stem Cells International 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/1610691.
Pełny tekst źródłaOtte, Elisabeth, Andreas Vlachos, and Maria Asplund. "Engineering strategies towards overcoming bleeding and glial scar formation around neural probes." Cell and Tissue Research 387, no. 3 (2022): 461–77. http://dx.doi.org/10.1007/s00441-021-03567-9.
Pełny tekst źródłaLi, Ping, Zhao-Qian Teng, and Chang-Mei Liu. "Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury." Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1279051.
Pełny tekst źródłaCloutier, Frank, Ilse Sears-Kraxberger, Krista Keachie, and Hans S. Keirstead. "Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis." Clinical and Developmental Immunology 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/812456.
Pełny tekst źródłaSaadoun, S. "Involvement of aquaporin-4 in astroglial cell migration and glial scar formation." Journal of Cell Science 118, no. 24 (2005): 5691–98. http://dx.doi.org/10.1242/jcs.02680.
Pełny tekst źródłaHsu, J. Y. C., L. Y. W. Bourguignon, C. M. Adams, et al. "Matrix Metalloproteinase-9 Facilitates Glial Scar Formation in the Injured Spinal Cord." Journal of Neuroscience 28, no. 50 (2008): 13467–77. http://dx.doi.org/10.1523/jneurosci.2287-08.2008.
Pełny tekst źródłaOhlsson, Marcus, Per Mattsson, Barbara D. Wamil, Carl G. Hellerqvist, and Mikael Svensson. "Macrophage stimulation using a group B-streptococcus exotoxin (CM101) leads to axonal regrowth in the injured optic nerve." Restorative Neurology and Neuroscience 22, no. 1 (2004): 33–41. https://doi.org/10.3233/rnn-2004-00244.
Pełny tekst źródłaLeme, Ricardo José de Almeida, and Gerson Chadi. "Distant microglial and astroglial activation secondary to experimental spinal cord lesion." Arquivos de Neuro-Psiquiatria 59, no. 3A (2001): 483–92. http://dx.doi.org/10.1590/s0004-282x2001000400002.
Pełny tekst źródłaRobel, Stefanie. "Astroglial Scarring and Seizures." Neuroscientist 23, no. 2 (2016): 152–68. http://dx.doi.org/10.1177/1073858416645498.
Pełny tekst źródłaYeh, Jue-Zong, Ding-Han Wang, Juin-Hong Cherng, et al. "A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury." Polymers 12, no. 10 (2020): 2245. http://dx.doi.org/10.3390/polym12102245.
Pełny tekst źródłaZhao, Lina, Xianyu Zhang, and Chunhai Zhang. "Methimazole Inhibits the Expression of GFAP and the Migration of Astrocyte in Scratched Wound Model In Vitro." Mediators of Inflammation 2020 (April 13, 2020): 1–7. http://dx.doi.org/10.1155/2020/4027470.
Pełny tekst źródłaWidayati, Aris, Fedik Abdul Rantam, Abdulloh Machin та Wibi Riawan. "Inhibition of Neurogenesis and Induction of Glial Scar Formation by Neuroinflammation Following Ischemic Stroke: Evaluation of BDNF, GFAP, HMGB1 and TNF-α Expressions". Indonesian Biomedical Journal 17, № 1 (2025): 99–108. https://doi.org/10.18585/inabj.v17i1.3439.
Pełny tekst źródłaHayashi, Noriko, Seiji Miyata, Yutaka Kariya, Ryo Takano, Saburo Hara, and Kaeko Kamei. "Attenuation of glial scar formation in the injured rat brain by heparin oligosaccharides." Neuroscience Research 49, no. 1 (2004): 19–27. http://dx.doi.org/10.1016/j.neures.2004.01.007.
Pełny tekst źródłaRomero-Ramírez, Lorenzo, Manuel Nieto-Sampedro, and MAsunción Barreda-Manso. "All roads go to Salubrinal: endoplasmic reticulum stress, neuroprotection and glial scar formation." Neural Regeneration Research 10, no. 12 (2015): 1926. http://dx.doi.org/10.4103/1673-5374.169619.
Pełny tekst źródłaSong, Byeong Gwan, Su Yeon Kwon, Jae Won Kyung, et al. "Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation." International Journal of Molecular Sciences 23, no. 11 (2022): 6218. http://dx.doi.org/10.3390/ijms23116218.
Pełny tekst źródłaSun, Daniel, and Tatjana C. Jakobs. "Structural Remodeling of Astrocytes in the Injured CNS." Neuroscientist 18, no. 6 (2011): 567–88. http://dx.doi.org/10.1177/1073858411423441.
Pełny tekst źródłaParry, Phillip V., and Johnathan A. Engh. "Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation." Neurosurgery 70, no. 6 (2012): N10—N11. http://dx.doi.org/10.1227/01.neu.0000414941.18107.47.
Pełny tekst źródłaZhu, Yong-Ming, Xue Gao, Yong Ni, et al. "Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia–reperfusion brain injury." Neuroscience 356 (July 2017): 125–41. http://dx.doi.org/10.1016/j.neuroscience.2017.05.004.
Pełny tekst źródłaWang, Yu-Fu, Jia-Ning Zu, Jing Li, Chao Chen, Chun-Yang Xi, and Jing-Long Yan. "Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation." Neuroscience Letters 560 (February 2014): 51–56. http://dx.doi.org/10.1016/j.neulet.2013.11.050.
Pełny tekst źródłaUesugi, Masafumi, Yoshitoshi Kasuva, Hiroshi Hama, Tomoh Masaki, and Katsutoshi Goto. "The Participation of Endogenous ET-1 in Glial Scar formation after Spinal Cord Injury." Japanese Journal of Pharmacology 73 (1997): 112. http://dx.doi.org/10.1016/s0021-5198(19)44953-6.
Pełny tekst źródłaOkuda, Akinori, Noriko Horii-Hayashi, Takayo Sasagawa, et al. "Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats." Journal of Neurosurgery: Spine 26, no. 3 (2017): 388–95. http://dx.doi.org/10.3171/2016.8.spine16250.
Pełny tekst źródłaZhang, Rongyi, Junhua Wang, Qingwen Deng, et al. "Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord." Neurospine 20, no. 4 (2023): 1358–79. http://dx.doi.org/10.14245/ns.2346824.412.
Pełny tekst źródłaPasterkamp, R. Jeroen, and Joost Verhaagen. "Semaphorins in axon regeneration: developmental guidance molecules gone wrong?" Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1473 (2006): 1499–511. http://dx.doi.org/10.1098/rstb.2006.1892.
Pełny tekst źródła