Artykuły w czasopismach na temat „Glycerol signaling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Glycerol signaling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hohmann, Stefan. "Osmotic Stress Signaling and Osmoadaptation in Yeasts." Microbiology and Molecular Biology Reviews 66, no. 2 (2002): 300–372. http://dx.doi.org/10.1128/mmbr.66.2.300-372.2002.
Pełny tekst źródłaIsmail, Alaa, Ahmed Salah, Adel Guirgis, Shaden Muawia, and Hany Khalil. "Glycerol-mediated lysosomal associated proteins as a novel anticancer theory in colon cancer cell line." Journal of Internal Medicine: Science & Art 4 (May 25, 2023): 2–10. http://dx.doi.org/10.36013/jimsa.v4i.110.
Pełny tekst źródłaAllmann, Stefan, Marion Wargnies, Nicolas Plazolles, et al. "Glycerol suppresses glucose consumption in trypanosomes through metabolic contest." PLOS Biology 19, no. 8 (2021): e3001359. http://dx.doi.org/10.1371/journal.pbio.3001359.
Pełny tekst źródłaKrantz, Marcus, Bodil Nordlander, Hadi Valadi, Mikael Johansson, Lena Gustafsson, and Stefan Hohmann. "Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock." Eukaryotic Cell 3, no. 6 (2004): 1381–90. http://dx.doi.org/10.1128/ec.3.6.1381-1390.2004.
Pełny tekst źródłaZhang, Zhao, Diana M. Iglesias, Rachel Corsini, LeeLee Chu та Paul Goodyer. "WNT/β-Catenin Signaling Is Required for Integration of CD24+Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules". Stem Cells International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/391043.
Pełny tekst źródłaNath, Karl A., John D. Belcher, Meryl C. Nath, et al. "Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins." American Journal of Physiology-Renal Physiology 314, no. 5 (2018): F906—F914. http://dx.doi.org/10.1152/ajprenal.00432.2017.
Pełny tekst źródłaMugabo, Yves, Shangang Zhao, Julien Lamontagne та ін. "Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells". Journal of Biological Chemistry 292, № 18 (2017): 7407–22. http://dx.doi.org/10.1074/jbc.m116.763060.
Pełny tekst źródłaZeng, Changjun, Keyi Tang, Lian He, et al. "Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation." Cryobiology 68, no. 3 (2014): 395–404. http://dx.doi.org/10.1016/j.cryobiol.2014.03.008.
Pełny tekst źródłaBełtowski, Jerzy, and Krzysztof Wiórkowski. "Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome." International Journal of Molecular Sciences 23, no. 3 (2022): 1346. http://dx.doi.org/10.3390/ijms23031346.
Pełny tekst źródłaZager, Richard A., and Ali C. M. Johnson. "Acute kidney injury induces dramatic p21 upregulation via a novel, glucocorticoid-activated, pathway." American Journal of Physiology-Renal Physiology 316, no. 4 (2019): F674—F681. http://dx.doi.org/10.1152/ajprenal.00571.2018.
Pełny tekst źródłaMiermont, Agnès, Jannis Uhlendorf, Megan McClean, and Pascal Hersen. "The Dynamical Systems Properties of the HOG Signaling Cascade." Journal of Signal Transduction 2011 (February 7, 2011): 1–12. http://dx.doi.org/10.1155/2011/930940.
Pełny tekst źródłaMugabo, Yves, Shangang Zhao, Annegrit Seifried та ін. "Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes". Proceedings of the National Academy of Sciences 113, № 4 (2016): E430—E439. http://dx.doi.org/10.1073/pnas.1514375113.
Pełny tekst źródłaKrycer, James R., Lake-Ee Quek, Deanne Francis, et al. "Insulin signaling requires glucose to promote lipid anabolism in adipocytes." Journal of Biological Chemistry 295, no. 38 (2020): 13250–66. http://dx.doi.org/10.1074/jbc.ra120.014907.
Pełny tekst źródłaZhang, Michael S., Aline Sandouk, and Jon C. D. Houtman. "Glycerol Monolaurate (GML) inhibits human T cell signaling, metabolism, and function by disrupting lipid dynamics." Journal of Immunology 196, no. 1_Supplement (2016): 57.4. http://dx.doi.org/10.4049/jimmunol.196.supp.57.4.
Pełny tekst źródłaSantos, Ronaldo Silva, Gabriel Martins-Silva, Adrián Adolfo Álvarez Padilla, et al. "Transcriptional and Post-Translational Roles of Calcineurin in Cationic Stress and Glycerol Biosynthesis in Cryptococcus neoformans." Journal of Fungi 10, no. 8 (2024): 531. http://dx.doi.org/10.3390/jof10080531.
Pełny tekst źródłaSong, Tengyao, Qiongyu Hao, Yun-Min Zheng, Qing-Hua Liu, and Yong-Xiao Wang. "Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 309, no. 12 (2015): L1455—L1466. http://dx.doi.org/10.1152/ajplung.00148.2015.
Pełny tekst źródłaKeil, Linda, Norbert Mehlmer, Daniel Garbe, and Thomas Brück. "Biosynthese von Glycerin in Dunaliella tertiolecta unter Salzstress." BIOspektrum 31, no. 1 (2025): 110–12. https://doi.org/10.1007/s12268-025-2374-3.
Pełny tekst źródłaPan, Sheng-Jun, Mingyan Zhu, Mohan K. Raizada, Colin Sumners та Craig H. Gelband. "ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-α". American Journal of Physiology-Cell Physiology 281, № 1 (2001): C17—C23. http://dx.doi.org/10.1152/ajpcell.2001.281.1.c17.
Pełny tekst źródłaLi, Liande, and Katherine A. Borkovich. "GPR-4 Is a Predicted G-Protein-Coupled Receptor Required for Carbon Source-Dependent Asexual Growth and Development in Neurospora crassa." Eukaryotic Cell 5, no. 8 (2006): 1287–300. http://dx.doi.org/10.1128/ec.00109-06.
Pełny tekst źródłaKowalczyk-Bołtuć, Jolanta, Krzysztof Wiórkowski, and Jerzy Bełtowski. "Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue." Biomolecules 12, no. 5 (2022): 646. http://dx.doi.org/10.3390/biom12050646.
Pełny tekst źródłaFricke, Katrin, Aleksandra Heitland, and Erik Maronde. "Cooperative Activation of Lipolysis by Protein Kinase A and Protein Kinase C Pathways in 3T3-L1 Adipocytes." Endocrinology 145, no. 11 (2004): 4940–47. http://dx.doi.org/10.1210/en.2004-0803.
Pełny tekst źródłaHoy, Andrew J., Amanda E. Brandon, Nigel Turner, et al. "Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation." American Journal of Physiology-Endocrinology and Metabolism 297, no. 1 (2009): E67—E75. http://dx.doi.org/10.1152/ajpendo.90945.2008.
Pełny tekst źródłaShimizu, Maria Heloisa Massola, Rildo Aparecido Volpini, Ana Carolina de Bragança, et al. "Administration of a single dose of lithium ameliorates rhabdomyolysis-associated acute kidney injury in rats." PLOS ONE 18, no. 2 (2023): e0281679. http://dx.doi.org/10.1371/journal.pone.0281679.
Pełny tekst źródłaVenugopal, Srivathsa C., Bidisha Chanda, Lisa Vaillancourt, Aardra Kachroo, and Pradeep Kachroo. "The common metabolite glycerol-3-phosphate is a novel regulator of plant defense signaling." Plant Signaling & Behavior 4, no. 8 (2009): 746–49. http://dx.doi.org/10.4161/psb.4.8.9111.
Pełny tekst źródłaUchigashima, Motokazu, Madoka Narushima, Masahiro Fukaya, Istven Katona, Masanobu Kano, and Masahiko Watanabe. "Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling in the striatum." Neuroscience Research 58 (January 2007): S75. http://dx.doi.org/10.1016/j.neures.2007.06.440.
Pełny tekst źródłaSon, Dajeong, and Myoungsook Lee. "DNAJC6 Gene Depressed Adipogenesis and Insulin Signaling in 3T3-L1 Cells." Current Developments in Nutrition 6, Supplement_1 (2022): 1086. http://dx.doi.org/10.1093/cdn/nzac070.045.
Pełny tekst źródłaRai, Madhulika, Hongde Li, Robert A. Policastro, et al. "Glycolytic disruption restricts Drosophila melanogaster larval growth via the cytokine Upd3." PLOS Genetics 21, no. 5 (2025): e1011690. https://doi.org/10.1371/journal.pgen.1011690.
Pełny tekst źródłaGuaragnella, Nicoletta, Gennaro Agrimi, Pasquale Scarcia, et al. "RTG Signaling Sustains Mitochondrial Respiratory Capacity in HOG1-Dependent Osmoadaptation." Microorganisms 9, no. 9 (2021): 1894. http://dx.doi.org/10.3390/microorganisms9091894.
Pełny tekst źródłaXu, Weitong, Fengyue Zhu, Dengqiang Wang, et al. "Comparative Analysis of Metabolites between Different Altitude Schizothorax nukiangensis (Cyprinidae, Schizothoracine) on the Qinghai-Tibet Plateau in Nujiang River." Water 15, no. 2 (2023): 284. http://dx.doi.org/10.3390/w15020284.
Pełny tekst źródłaTewson, Paul H., Scott Martinka, Nathan C. Shaner, Thomas E. Hughes, and Anne Marie Quinn. "New DAG and cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories." Journal of Biomolecular Screening 21, no. 3 (2015): 298–305. http://dx.doi.org/10.1177/1087057115618608.
Pełny tekst źródłaShock, Teresa R., James Thompson, John R. Yates, and Hiten D. Madhani. "Hog1 Mitogen-Activated Protein Kinase (MAPK) Interrupts Signal Transduction between the Kss1 MAPK and the Tec1 Transcription Factor To Maintain Pathway Specificity." Eukaryotic Cell 8, no. 4 (2009): 606–16. http://dx.doi.org/10.1128/ec.00005-09.
Pełny tekst źródłaTsukahara, Tamotsu. "PPARγNetworks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid". Journal of Lipids 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/246597.
Pełny tekst źródłaBersching, Katharina, and Stefan Jacob. "The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing." Journal of Fungi 7, no. 5 (2021): 393. http://dx.doi.org/10.3390/jof7050393.
Pełny tekst źródłaSalari, Hassan, Mervin Low, Sandra Howard, Glenn Edin, and Robert Bittman. "l-O-Hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine inhibits diacylglycerol kinase in WEHI-3B cells." Biochemistry and Cell Biology 71, no. 1-2 (1993): 36–42. http://dx.doi.org/10.1139/o93-006.
Pełny tekst źródłaZhang, Michael S., Aline Sandouk, and Jon C. D. Houtman. "Glycerol Monolaurate (GML) Inhibits Human T Cell Signaling, Metabolism, and Function By Disrupting Lipid Dynamics." Journal of Allergy and Clinical Immunology 139, no. 2 (2017): AB269. http://dx.doi.org/10.1016/j.jaci.2016.12.866.
Pełny tekst źródłaRoeder, Amy D., Greg J. Hermann, Brian R. Keegan, Stephanie A. Thatcher, and Janet M. Shaw. "Mitochondrial Inheritance Is Delayed in Saccharomyces cerevisiae Cells Lacking the Serine/Threonine PhosphatasePTC1." Molecular Biology of the Cell 9, no. 4 (1998): 917–30. http://dx.doi.org/10.1091/mbc.9.4.917.
Pełny tekst źródłaBalsinde, Jesús, and María A. Balboa. "Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis." Biomolecules 14, no. 11 (2024): 1461. http://dx.doi.org/10.3390/biom14111461.
Pełny tekst źródłaMuratsu, Jun, Fumihiro Sanada, Nobutaka Koibuchi, et al. "Blocking Periostin Prevented Development of Inflammation in Rhabdomyolysis-Induced Acute Kidney Injury Mice Model." Cells 11, no. 21 (2022): 3388. http://dx.doi.org/10.3390/cells11213388.
Pełny tekst źródłaMuller, Tania, Laurent Demizieux, Stéphanie Troy-Fioramonti, et al. "Overactivation of the endocannabinoid system alters the antilipolytic action of insulin in mouse adipose tissue." American Journal of Physiology-Endocrinology and Metabolism 313, no. 1 (2017): E26—E36. http://dx.doi.org/10.1152/ajpendo.00374.2016.
Pełny tekst źródłaBailey, Lakiea J., Vivek Choudhary та Wendy B. Bollag. "Possible Role of Phosphatidylglycerol-Activated Protein Kinase C-βII in Keratinocyte Differentiation". Open Dermatology Journal 11, № 1 (2017): 59–71. http://dx.doi.org/10.2174/1874372201711010059.
Pełny tekst źródłaLee, Mi Rim, Ji Eun Kim, Jun Young Choi, et al. "Morusin Functions as a Lipogenesis Inhibitor as Well as a Lipolysis Stimulator in Differentiated 3T3-L1 and Primary Adipocytes." Molecules 23, no. 8 (2018): 2004. http://dx.doi.org/10.3390/molecules23082004.
Pełny tekst źródłaRoss, Sarah E., Robin L. Erickson, Isabelle Gerin та ін. "Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor α in Adipocyte Metabolism". Molecular and Cellular Biology 22, № 16 (2002): 5989–99. http://dx.doi.org/10.1128/mcb.22.16.5989-5999.2002.
Pełny tekst źródłaAdhikari, Hema, and Paul J. Cullen. "Role of Phosphatidylinositol Phosphate Signaling in the Regulation of the Filamentous-Growth Mitogen-Activated Protein Kinase Pathway." Eukaryotic Cell 14, no. 4 (2015): 427–40. http://dx.doi.org/10.1128/ec.00013-15.
Pełny tekst źródłaReiser, Vladimír, Katharine E. D’Aquino, Ly-Sha Ee, and Angelika Amon. "The Stress-activated Mitogen-activated Protein Kinase Signaling Cascade Promotes Exit from Mitosis." Molecular Biology of the Cell 17, no. 7 (2006): 3136–46. http://dx.doi.org/10.1091/mbc.e05-12-1102.
Pełny tekst źródłaIyer, Prajish, Brian Jiang, Girish Venkataraman, et al. "Integrating Metabolomics and Molecular Pathways to Uncover Therapeutic Vulnerabilities in Richter's Transformation." Blood 144, Supplement 1 (2024): 760. https://doi.org/10.1182/blood-2024-199843.
Pełny tekst źródłaBaranwal, Shivani, Gajendra Kumar Azad, Vikash Singh, and Raghuvir S. Tomar. "Signaling of Chloroquine-Induced Stress in the Yeast Saccharomyces cerevisiae Requires the Hog1 and Slt2 Mitogen-Activated Protein Kinase Pathways." Antimicrobial Agents and Chemotherapy 58, no. 9 (2014): 5552–66. http://dx.doi.org/10.1128/aac.02393-13.
Pełny tekst źródłaJohnson, Ali CM, Kirsten Becker, and Richard A. Zager. "Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury." American Journal of Physiology-Renal Physiology 299, no. 2 (2010): F426—F435. http://dx.doi.org/10.1152/ajprenal.00248.2010.
Pełny tekst źródłaChen, Jianchun, Jian-Kang Chen, John R. Falck, et al. "Mitogenic Activity and Signaling Mechanism of 2-(14,15-Epoxyeicosatrienoyl)Glycerol, a Novel Cytochrome P450 Arachidonate Metabolite." Molecular and Cellular Biology 27, no. 14 (2007): 5260. http://dx.doi.org/10.1128/mcb.00920-07.
Pełny tekst źródłaChen, Jianchun, Jian-Kang Chen, John R. Falck, Siddam Anjaiah, Jorge H. Capdevila, and Raymond C. Harris. "Mitogenic Activity and Signaling Mechanism of 2-(14,15- Epoxyeicosatrienoyl)Glycerol, a Novel Cytochrome P450 Arachidonate Metabolite." Molecular and Cellular Biology 27, no. 8 (2007): 3023–34. http://dx.doi.org/10.1128/mcb.01482-06.
Pełny tekst źródłaRahib, Lola, Nicole K. MacLennan, Steve Horvath, James C. Liao, and Katrina M. Dipple. "Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling." European Journal of Human Genetics 15, no. 6 (2007): 646–57. http://dx.doi.org/10.1038/sj.ejhg.5201801.
Pełny tekst źródła