Gotowa bibliografia na temat „Goal Abstraction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Goal Abstraction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Goal Abstraction"
Lee, David S., i Oscar Ybarra. "Cultivating Effective Social Support Through Abstraction". Personality and Social Psychology Bulletin 43, nr 4 (31.01.2017): 453–64. http://dx.doi.org/10.1177/0146167216688205.
Pełny tekst źródłaMatook, Sabine, i Hans van der Heijden. "Goal Abstraction, Goal Linkage Dependency, and Perceived Utilitarian Value of Information Systems". Journal of Organizational and End User Computing 25, nr 2 (kwiecień 2013): 41–58. http://dx.doi.org/10.4018/joeuc.2013040103.
Pełny tekst źródłaAbel, David. "A Theory of State Abstraction for Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9876–77. http://dx.doi.org/10.1609/aaai.v33i01.33019876.
Pełny tekst źródłaSeipp, Jendrik, i Malte Helmert. "Counterexample-Guided Cartesian Abstraction Refinement for Classical Planning". Journal of Artificial Intelligence Research 62 (25.07.2018): 535–77. http://dx.doi.org/10.1613/jair.1.11217.
Pełny tekst źródłaSurynek, Pavel. "Non-Refined Abstractions in Counterexample Guided Abstraction Refinement for Multi-Agent Path Finding (Extended Abstract)". Proceedings of the International Symposium on Combinatorial Search 17 (1.06.2024): 287–88. http://dx.doi.org/10.1609/socs.v17i1.31584.
Pełny tekst źródłaSriraman, Bharath. "Discovering Steiner Triple Systems through Problem Solving". Mathematics Teacher 97, nr 5 (maj 2004): 320–26. http://dx.doi.org/10.5951/mt.97.5.0320.
Pełny tekst źródłaSriraman, Bharath. "Discovering Steiner Triple Systems through Problem Solving". Mathematics Teacher 97, nr 5 (maj 2004): 320–26. http://dx.doi.org/10.5951/mt.97.5.0320.
Pełny tekst źródłaWientjes, Sven, i Clay B. Holroyd. "The successor representation subserves hierarchical abstraction for goal-directed behavior". PLOS Computational Biology 20, nr 2 (20.02.2024): e1011312. http://dx.doi.org/10.1371/journal.pcbi.1011312.
Pełny tekst źródłaCalmet, Jacques, i Marvin Oliver Schneider. "Decision Making Modeled as a Theorem Proving Process". International Journal of Decision Support System Technology 4, nr 3 (lipiec 2012): 1–11. http://dx.doi.org/10.4018/jdsst.2012070101.
Pełny tekst źródłaSeipp, Jendrik, i Malte Helmert. "Diverse and Additive Cartesian Abstraction Heuristics". Proceedings of the International Conference on Automated Planning and Scheduling 24 (11.05.2014): 289–97. http://dx.doi.org/10.1609/icaps.v24i1.13639.
Pełny tekst źródłaRozprawy doktorskie na temat "Goal Abstraction"
Zadem, Mehdi. "Automatic Symbolic Goal Abstraction via Reachability Analysis in Hierarchical Reinforcement Learning". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX141.
Pełny tekst źródłaHierarchical Reinforcement Learning (HRL) is a paradigm that can be leveraged to automatically learn strategies for long-horizon tasks, which typically involve multiple milestones that must be achieved before the problem is solved. The main idea behind Hierarchical Reinforcement Learning is to break up the difficult task into smaller sub-tasks, that can be more easily approached under in a more constrained aspect.A core challenge in HRL is to identify an ideal decomposition of the long-horizon task in the form of goals that a learning agent will try to achieve. High-dimensional environments and complex dynamics make it particularly difficult for the agent to understand which goals are critical for the task.This thesis explores the concept of learning symbolic goal representations within HRL, inspired from abstractions studied in the field of Formal Methods. We develop a spatial abstraction method that captures reachability relations in the environment's observable space, and provide guarantees on the suboptimality of the agent's learned policy. We also prove that the goal abstraction can be computed through a process of refinement. Furthermore, we implement the reachability-aware goal abstraction with a Hierarchical Reinforcement Learning framework called GARA, creating an agent that can concurrently learn the goal abstraction and policy. We showcase the impact of the goal abstraction in the agent's learning efficiency, transferability and interpretability on a set of low-dimensional navigation tasks. In high-dimensional tasks, the abstract goals that be initially too difficult to achieve before refinement. To remedy this issue, we propose a novel algorithm STAR that leverages the reachability-aware spatial abstraction along with a temporal abstraction mechanism allowing for more flexibility on the difficulty of chosen goals. We empirically demonstrate that STAR outperforms the state of the art on a set of difficult continuous control tasks
Denis, Nicholas. "On Hierarchical Goal Based Reinforcement Learning". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39552.
Pełny tekst źródłaMarchal, Cynthie. "Post-hoc prescience: retrospective reasoning and judgment among witnesses of interpersonal aggression". Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209818.
Pełny tekst źródłaLorsque les témoins jugent une agression interpersonnelle, il est généralement attendu d’eux qu’ils considèrent rationnellement ce qu’une personne raisonnable aurait pu penser, savoir et faire dans pareille situation, et ce en se fondant uniquement sur les preuves qui leur sont fournies. Il n’en reste pas moins que leur analyse sera toutefois tronquée par des biais de jugement et des motivations personnelles. C’est pourquoi la détermination du blâme et l’influence des déformations rétrospectives et évaluatives sont au cœur de cette recherche. Ainsi, nous investiguons plus particulièrement le biais de rétrospection, à savoir l’erreur commune qui laisse à l’individu penser qu’il est en mesure de prévoir n’importe quel événement, alors qu’en réalité, il n’en est rien. Une telle erreur peut cependant avoir de graves conséquences pour la victime dès lors que les témoins sont amenés à croire qu’elle aurait « dû » prévoir ce qui allait survenir. Dans cette thèse, nous envisageons également les modérateurs de ce biais, dont le rôle du contexte communicationnel. Nous avons, dès lors, fait l’hypothèse que le contexte communicationnel pourrait affecter l’angle sous lequel les témoins considèrent l’événement et la distance perçue par rapport à celui-ci. Ce faisant, nous pensions que le biais de rétrospection et le blâme de la victime seraient réduits lorsque le contexte diminuait la distance perçue vis-à-vis de l’événement (en l’occurrence, la distance temporelle et la proximité perçue avec le sort de la victime). De même, il était attendu que l’agresseur soit davantage blâmé dans pareille condition. Les quatre premières études s’intéressaient donc au rôle des buts poursuivis lors de la communication à propos de l’agression, afin d’envisager en quoi décrire comment (vs. pourquoi) l’agression s’était produite aidait à réduire la distance perçue. Une cinquième étude nous a ensuite permis de considérer si la voix passive (versus active) avait aussi un effet similaire. Quant aux quatre dernières études, elles avaient pour objectif d’investiguer dans quelle mesure l’ordre de présentation des informations (connaître la fin avant, vs. après les antécédents) pouvait avoir également une incidence sur la prise de distance par rapport à l’événement et aux jugements. Plus précisément, nous faisions l’hypothèse que connaître l’événement en premier lieu (avant ses antécédents) facilitait la réduction de la distance perçue. Les résultats obtenus dans les cinq premières recherches semblaient confirmer nos hypothèses :Un contexte communicationnel qui réduisait la distance psychologique perçue par rapport à l’événement pouvait non seulement diminuer le biais de rétrospection et le blâme de la victime, mais augmenter aussi le blâme de l’agresseur. Toutefois, les dernières recherches ont semblé démontrer, a contrario, que connaître l’agression en premier lieu pouvait réduire le blâme de l’agresseur et augmenter celui de la victime, alors même que la distance perçue avec les événements était réduite. In fine, ce travail suggère donc que le contexte communicationnel, dans lequel le biais émerge, et la prise de distance face à l’événement négatif sont autant de pistes qu’il faudrait creuser à l’avenir pour mieux comprendre le raisonnement et les jugements rétrospectifs des témoins.
Doctorat en Sciences Psychologiques et de l'éducation
info:eu-repo/semantics/nonPublished
Jardim, David Walter Figueira. "Hierarchical reinforcement learning: learning sub-goals and state-abstraction". Master's thesis, 2010. http://hdl.handle.net/10071/2866.
Pełny tekst źródłaHuman beings have the incredible capability of creating and using abstractions. With these abstractions we are able to solve extremely complex tasks that require a lot of foresight and planning. Research in Hierarchical Reinforcement Learning has demonstrated the utility of abstractions, but, it also has introduced a new problem. How can we find a way to autonomously discover and create useful abstractions while learning? In this dissertation we present a new method that allows an agent to discover and create temporal abstractions autonomously based in the options framework. Our method is based on the concept that to reach the goal, the agent must pass through certain states. Throughout time these states will begin to differentiate from others, and will be detected as useful subgoals and be used by the agent to create new temporal abstractions, whose objective is to help achieve these subgoals. To detect useful subgoals, our method creates intersections between several paths leading to a goal. In order for a task to be solved successfully the agent must pass through certain regions of the state space, these regions will correspond to our definition of subgoals. Our research focused on domains largely used in the study of the utility of temporal abstractions, which is the room-to-room navigation problem, and also the taxi problem. We determined that, in the problems tested, an agent can learn more rapidly in more complex problems by automatically discovering subgoals and creating abstractions without needing a programmer to provide additional information and handcraft the abstractions.
Książki na temat "Goal Abstraction"
Andrew, Nell. Moving Modernism. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190057275.001.0001.
Pełny tekst źródłaHellman, Geoffrey, i Stewart Shapiro. The Matter of Points. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198712749.003.0007.
Pełny tekst źródłaOlejnik, Iwona, red. Qualitative and quantitative methods in sustainable development. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, 2021. http://dx.doi.org/10.18559/978-83-8211-072-2.
Pełny tekst źródłaGlennan, Stuart. Models, Mechanisms, and How Explanations. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198779711.003.0003.
Pełny tekst źródłaGarland, Baalla. Congratulations on Your New Job Abstractor: Abstractor Gift - Blank Lined Notebook Job Congratulations Gifts. This Journal Is a Perfect for Taking Notes, Ideas, Writing Goals and Plans, or Writing Diary. Independently Published, 2021.
Znajdź pełny tekst źródłaWilliams, Scott M. John Duns Scotus. Redaktorzy William J. Abraham i Frederick D. Aquino. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199662241.013.12.
Pełny tekst źródłaHaskell, Ellen. A Composite Countenance. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190636647.003.0007.
Pełny tekst źródłaButz, Martin V., i Esther F. Kutter. How the Mind Comes into Being. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.001.0001.
Pełny tekst źródłaCzęści książek na temat "Goal Abstraction"
Okubo, Yoshiaki, i Makoto Haraguchi. "Constructing predicate mappings for Goal-Dependent Abstraction". W Lecture Notes in Computer Science, 516–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58520-6_87.
Pełny tekst źródłaBarth, Max, Daniel Dietsch, Matthias Heizmann i Marie-Christine Jakobs. "Ultimate TestGen: Test-Case Generation with Automata-based Software Model Checking (Competition Contribution)". W Fundamental Approaches to Software Engineering, 326–30. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57259-3_20.
Pełny tekst źródłaYang, Pengfei, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue i Lijun Zhang. "Improving Neural Network Verification through Spurious Region Guided Refinement". W Tools and Algorithms for the Construction and Analysis of Systems, 389–408. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_21.
Pełny tekst źródłaCirisci, Berk, Constantin Enea i Suha Orhun Mutluergil. "Quorum Tree Abstractions of Consensus Protocols". W Programming Languages and Systems, 337–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30044-8_13.
Pełny tekst źródłaBertrand, Yannis, Bram Van den Abbeele, Silvestro Veneruso, Francesco Leotta, Massimo Mecella i Estefanía Serral. "A Survey on the Application of Process Mining to Smart Spaces Data". W Lecture Notes in Business Information Processing, 57–70. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27815-0_5.
Pełny tekst źródłaMüller, Rainer, i Martin Karkowski. "Generic Modeling Technique for Flexible and Highly Available Assembly Systems". W Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 3–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_1.
Pełny tekst źródłaMaranhão Junior, João José, Filipe F. Correia i Eduardo Martins Guerra. "Can ChatGPT Suggest Patterns? An Exploratory Study About Answers Given by AI-Assisted Tools to Design Problems". W Lecture Notes in Business Information Processing, 130–38. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-72781-8_14.
Pełny tekst źródłaDorst, Leo. "Bottom-up derivation of the qualitatively different behaviors of a car across varying spatio-temporal scales: A study in abstraction of goal-directed motion". W Algebraic Frames for the Perception-Action Cycle, 344–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0017877.
Pełny tekst źródłaCasas, Robert D. Thompson. "Applying DATEMATS Methods and Tools to Nanomaterials: A Design Challenge by the Company Antolin". W Materialising the Future, 83–101. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25207-5_5.
Pełny tekst źródłaSuazo Laguna, Harold Agusto. "An Autobiographical Perspective on Community-Based Participatory Research, an Approach for More Inclusive Research in Nicaragua". W Sustainable Development Goals Series, 243–54. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-53793-6_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Goal Abstraction"
Ilcheva, Irena, Vesela Zaharieva, Anna Yordanova i Snejanka Balabanova. "CATCHMENT ABSTRACTION MANAGEMENT STRATEGY AND ECOLOGICAL FLOW DETERMINATION IN CASE OF NATURA 2000 AREAS". W 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 49–58. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/3.1/s12.06.
Pełny tekst źródłaMuhammad, Umar Riaz, Yongxin Yang, Timothy Hospedales, Tao Xiang i Yi-Zhe Song. "Goal-Driven Sequential Data Abstraction". W 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00016.
Pełny tekst źródłaCui, Zhenhe, Yongmei Liu i Kailun Luo. "A Uniform Abstraction Framework for Generalized Planning". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/253.
Pełny tekst źródłaDelgado, H. Mayela, Francisca Losavio i Alfredo Matteo. "Goal oriented techniques and methods: Goal refinement and levels of abstraction". W 2013 Latin American Computing Conference (CLEI). IEEE, 2013. http://dx.doi.org/10.1109/clei.2013.6670631.
Pełny tekst źródłaSurynek, Pavel. "Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning". W 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023. http://dx.doi.org/10.1109/iros55552.2023.10341952.
Pełny tekst źródłaKim, Donghoon, Minjong Yoo i Honguk Woo. "Offline Policy Learning via Skill-step Abstraction for Long-horizon Goal-Conditioned Tasks". W Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/473.
Pełny tekst źródłaZadem, Mehdi, Sergio Mover i Sao Mai Nguyen. "Goal Space Abstraction in Hierarchical Reinforcement Learning via Set-Based Reachability Analysis". W 2023 IEEE International Conference on Development and Learning (ICDL). IEEE, 2023. http://dx.doi.org/10.1109/icdl55364.2023.10364473.
Pełny tekst źródłaOkubo, Yoshiaki, i Makoto Haraguchi. "Attacking legal argument by examining stability of case citation with goal-dependent abstraction". W the sixth international conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/261618.261652.
Pełny tekst źródłaBanihashemi, Bita, Giuseppe De Giacomo i Yves Lesperance. "Abstraction of Nondeterministic Situation Calculus Action Theories". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/347.
Pełny tekst źródłaBanihashemi, Bita, Giuseppe De Giacomo i Yves Lespérance. "Abstraction of Agents Executing Online and their Abilities in the Situation Calculus". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/235.
Pełny tekst źródłaRaporty organizacyjne na temat "Goal Abstraction"
Pham, H., T. Budge i R. Nell. Predictive Flow Simulation with the P2R Model for the 200-IA-1 Preliminary Remediation Goal Saturated Zone Abstraction. Office of Scientific and Technical Information (OSTI), styczeń 2022. http://dx.doi.org/10.2172/1842314.
Pełny tekst źródłaSinfield, Joseph, i Romika Kotian. Framing Complex Challenges. Purdue University, sierpień 2023. http://dx.doi.org/10.5703/1288284317649.
Pełny tekst źródłaPoloboc, Alina. Fancy Pink Goat. Intellectual Archive, grudzień 2023. http://dx.doi.org/10.32370/iaj.2998.
Pełny tekst źródła