Gotowa bibliografia na temat „Heat Fluid mechanics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Heat Fluid mechanics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Heat Fluid mechanics"

1

I., E., Dale A. Anderson, John C. Tannehill i Richard H. Pletcher. "Computational Fluid Mechanics and Heat Transfer." Mathematics of Computation 46, nr 174 (kwiecień 1986): 764. http://dx.doi.org/10.2307/2008017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schmidt, Frank W. "Computational fluid mechanics and heat transfer". International Journal of Heat and Fluid Flow 7, nr 3 (wrzesień 1986): 239. http://dx.doi.org/10.1016/0142-727x(86)90028-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Schmidt, Frank W. "Computational fluid mechanics and heat transfer". International Journal of Heat and Fluid Flow 7, nr 1 (marzec 1986): 27. http://dx.doi.org/10.1016/0142-727x(86)90038-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zamora, Blas, Antonio S. Kaiser i Pedro G. Vicente. "Improvement in Learning on Fluid Mechanics and Heat Transfer Courses Using Computational Fluid Dynamics". International Journal of Mechanical Engineering Education 38, nr 2 (kwiecień 2010): 147–66. http://dx.doi.org/10.7227/ijmee.38.2.6.

Pełny tekst źródła
Streszczenie:
This paper is concerned with the teaching of fluid mechanics and heat transfer on courses for the industrial engineer degree at the Polytechnic University of Cartagena (Spain). In order to improve the engineering education, a pedagogical method that involves project-based learning, using computational fluid dynamics (CFD), was applied. The project-based learning works well for mechanical engineering education, since it prepares students for their later professional training. The courses combined applied and advanced concepts of fluid mechanics with the basic numerical aspects of CFD, including validation of the results obtained. In this approach, the physical understanding of practical problems of fluid mechanics and heat transfer played an important role. Satisfactory numerical results were obtained by using both Phoenics and Fluent finite-volume codes. Some cases were solved using the well known Matlab software. Comparisons were made between the results obtained by analytical solutions (if any) with those reached by CFD general-purpose codes and with those obtained by Matlab. This system provides engineering students with a solid comprehension of several aspects of thermal and fluids engineering.
Style APA, Harvard, Vancouver, ISO itp.
5

Ngo, C. C., M. J. Voon i F. C. Lai. "Online heat transfer and fluid mechanics laboratory". Computer Applications in Engineering Education 13, nr 1 (2005): 1–9. http://dx.doi.org/10.1002/cae.20025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Meyer, Josua P. "Heat Transfer, Fluid Mechanics and Thermodynamics—HEFAT2011". Heat Transfer Engineering 34, nr 14 (14.11.2013): 1141–46. http://dx.doi.org/10.1080/01457632.2013.776444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pal, Rajinder. "Teaching Fluid Mechanics and Thermodynamics Simultaneously through Pipeline Flow Experiments". Fluids 4, nr 2 (1.06.2019): 103. http://dx.doi.org/10.3390/fluids4020103.

Pełny tekst źródła
Streszczenie:
Entropy and entropy generation are abstract and illusive concepts for undergraduate students. In general, students find it difficult to visualize entropy generation in real (irreversible) processes, especially at a mechanistic level. Fluid mechanics laboratory can assist students in making the concepts of entropy and entropy generation more tangible. In flow of real fluids, dissipation of mechanical energy takes place due to friction in fluids. The dissipation of mechanical energy in pipeline flow is reflected in loss of pressure of fluid. The degradation of high quality mechanical energy into low quality frictional heat (internal energy) is simultaneously reflected in the generation of entropy. Thus, experiments involving measurements of pressure gradient as a function of flow rate in pipes offer an opportunity for students to visualize and quantify entropy generation in real processes. In this article, the background in fluid mechanics and thermodynamics relevant to the concepts of mechanical energy dissipation, entropy and entropy generation are reviewed briefly. The link between entropy generation and mechanical energy dissipation in pipe flow experiments is demonstrated both theoretically and experimentally. The rate of entropy generation in pipeline flow of Newtonian fluids is quantified through measurements of pressure gradient as a function of flow rate for a number of test fluids. The factors affecting the rate of entropy generation in pipeline flows are discussed.
Style APA, Harvard, Vancouver, ISO itp.
8

Molerus, Otto. "Fluid Mechanics and Heat Transfer in Fluidized Beds". KONA Powder and Particle Journal 18 (2000): 121–30. http://dx.doi.org/10.14356/kona.2000018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Reisel, John R. "Experimental heat transfer, fluid mechanics and thermodynamics 1993". Experimental Thermal and Fluid Science 11, nr 4 (listopad 1995): 414. http://dx.doi.org/10.1016/0894-1777(95)90004-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Granados-Ortiz, Francisco-Javier, i Joaquín Ortega-Casanova. "Mechanical Characterisation and Analysis of a Passive Micro Heat Exchanger". Micromachines 11, nr 7 (9.07.2020): 668. http://dx.doi.org/10.3390/mi11070668.

Pełny tekst źródła
Streszczenie:
Heat exchangers are widely used in many mechanical, electronic, and bioengineering applications at macro and microscale. Among these, the use of heat exchangers consisting of a single fluid passing through a set of geometries at different temperatures and two flows in T-shape channels have been extensively studied. However, the application of heat exchangers for thermal mixing over a geometry leading to vortex shedding has not been investigated. This numerical work aims to analyse and characterise a heat exchanger for microscale application, which consists of two laminar fluids at different temperature that impinge orthogonally onto a rectangular structure and generate vortex shedding mechanics that enhance thermal mixing. This work is novel in various aspects. This is the first work of its kind on heat transfer between two fluids (same fluid, different temperature) enhanced by vortex shedding mechanics. Additionally, this research fully characterise the underlying vortex mechanics by accounting all geometry and flow regime parameters (longitudinal aspect ratio, blockage ratio and Reynolds number), opposite to the existing works in the literature, which usually vary and analyse blockage ratio or longitudinal aspect ratio only. A relevant advantage of this heat exchanger is that represents a low-Reynolds passive device, not requiring additional energy nor moving elements to enhance thermal mixing. This allows its use especially at microscale, for instance in biomedical/biomechanical and microelectronic applications.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Heat Fluid mechanics"

1

Betancourt, Arturo. "Computational study of the heat transfer and fluid structure of a shell and tube heat exchanger". Thesis, Florida Atlantic University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10172609.

Pełny tekst źródła
Streszczenie:

A common technique to improve the performance of shell and tube heat exchangers (STHE) is by redirecting the flow in the shell side with a series of baffles. A key aspect in this technique is to understand the interaction of the fluid dynamics and heat transfer. Computational fluid dynamics simulations and experiments were performed to analysis the 3-dimensional flow and heat transfer on the shell side of an STHE with and without baffles. Although, it was found that there was a small difference in the average exit temperature between the two cases, the heat transfer coefficient was locally enhanced in the baffled case due to flow structures. The flow in the unbaffled case was highly streamed, while for the baffled case the flow was a highly complex flow with vortex structures formed by the tip of the baffles, the tubes, and the interaction of flow with the shell wall.

Style APA, Harvard, Vancouver, ISO itp.
2

Horton, F. G. "Aerodynamics and heat transfer of turbine blading". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Amin, Norsarahaida. "Oscillation-induced mean flows and heat transfer". Thesis, University of East Anglia, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329339.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Golter, Paul B. "Combining modern learning pedagogies in fluid mechanics and heat transfer". Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Summer2006/p%5Fgolter%5F063006.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lowdon, A. "Flow induced vibrations of tube arrays in heat exchangers". Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234773.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rizvi, Syed Mahdi Abbas. "Prediction of flow, combustion and heat transfer in pulverised coal flames". Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/8946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Karabay, Hasan. "Flow and heat transfer in cover-plate pre-swirl rotor-stator system". Thesis, University of Bath, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Malin, Michael Ronald. "Turbulence modelling for flow and heat transfer in jets, wakes and plumes". Thesis, University of London, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lloyd, S. "Fluid flow and heat transfer characteristics in the entrance regions of circular pipes". Thesis, Cardiff University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370795.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cole, Brian D. "Transient performance of parallel-flow and cross-flow direct transfer type heat exchangers with a step temperature change on the minimum capacity rate fluid stream. /". Online version of thesis, 1995. http://hdl.handle.net/1850/11924.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Heat Fluid mechanics"

1

1936-, Anderson Dale A., i Pletcher Richard H, red. Computational fluid mechanics and heat transfer. Wyd. 2. Washington, DC: Taylor & Francis, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Anderson, Dale A., John C. Tannehill, Richard H. Pletcher, Munipalli Ramakanth i Vijaya Shankar. Computational Fluid Mechanics and Heat Transfer. Fourth edition. | Boca Raton, FL : CRC Press, 2020. | Series: Computational and physical processes in mechanics and thermal sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781351124027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Raju, K. S. N. Fluid Mechanics, Heat Transfer, and Mass Transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470909973.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Engineering thermofluids: Thermodynamics, fluid mechanics, and heat transfer. Berlin: Springer, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

R, Welty James, i Aziz Abdul S, red. Introduction to thermal and fluid engineering. New York: Oxford University Press, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Meeting, American Society of Mechanical Engineers Winter. Symbolic computation in fluid mechanics and heat transfer. New York: American Society of Mechanical Engineers, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (2nd 1991 Dubrovnik, Croatia). Experimental heat transfer, fluid mechanics, and thermodynamics 1991. Redaktorzy Keffer J. F, Shah Ramesh K i Ganić Ejup N. New York: Elsevier, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lidia, Palese, red. Stability criteria for fluid flows. New Jersey: World Scientific, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Çengel, Yunus A. Fundamentals of thermal-fluid sciences. Wyd. 3. Boston: McGraw-Hill, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Çengel, Yunus A. Fundamentals of thermal-fluid sciences. Boston: McGraw-Hill, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Heat Fluid mechanics"

1

Husain, Afzal, i Kwang-Yong Kim. "Microchannel Heat Sinking: Analysis and Optimization". W Fluid Machinery and Fluid Mechanics, 185–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Yangjun, Weilin Zhuge, Shuyong Zhang i Jianzhong Xu. "Through Flow Models for Engine Turbocharging and Exhaust Heat Recovery". W Fluid Machinery and Fluid Mechanics, 227–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kang, Ho-Keun, Soo-Whan Ahn, Bachtiar-Krishna-Putra Ary i Jong-Woong Choi. "Swirl Flow and Heat Transfer Through Square Duct with Twisted Tape Insert". W Fluid Machinery and Fluid Mechanics, 122–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kleinstreuer, Clement. "Biofluid Flow and Heat Transfer". W Fluid Mechanics and Its Applications, 481–522. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zappoli, Bernard, Daniel Beysens i Yves Garrabos. "Basic Equation of Fluid Mechanics". W Heat Transfers and Related Effects in Supercritical Fluids, 379–411. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9187-8_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kowalewski, Tomasz, Phillip Ligrani, Andreas Dreizler, Christof Schulz i Uwe Fey. "Temperature and Heat Flux". W Springer Handbook of Experimental Fluid Mechanics, 487–561. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-30299-5_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Toschi, F., R. Tripiccione i R. Benzi. "Heat Transfer in Rayleigh-Bénard Systems". W Fluid Mechanics and Its Applications, 425–28. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5118-4_105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Deepesh Patidar, Ravindra Pardeshi, Laltu Chandra i Rajiv Shekhar. "Solar Convective Furnace for Heat Treatment of Aluminium". W Fluid Mechanics and Fluid Power – Contemporary Research, 1531–41. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Romagnoli, A., i R. M. F. Botas. "Heat Transfer in an Automotive Turbocharger Under Constant Load Points: an Experimental and Computational Investigation". W Fluid Machinery and Fluid Mechanics, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Delil, A. A. M. "Thermal Scaling of Two-Phase Heat Transport Systems for Space: Predictions Versus Results of Experiments". W Microgravity Fluid Mechanics, 469–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Heat Fluid mechanics"

1

"Modelling of fluid flow and heat distribution in a specific heat exchanger". W Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ayyaswamy, P. S. "Biotransport: Fluid Mechanics, Heat and Mass Transfer". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53178.

Pełny tekst źródła
Streszczenie:
There is an important need for comprehensive courses related to Biotransport to be offered at the undergraduate and graduate levels in US Universities. These courses must emphasize both theory and applications. At present, although there are many different descriptions of courses related to biotransport that are available in catalogues of various departments, it is clear that a systematic approach is needed to develop a formally comprehensive set of guidelines and course material descriptions in this that will be useful for the student body at large. As a part of this discussion, a comprehensive model course description is displayed in the following.
Style APA, Harvard, Vancouver, ISO itp.
3

Suzuki, Y., i T. Inoue. "Flow and heat transfer characteristics of tornado-like vortex flow". W ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

"Fluid mechanics, turbulence, wind power". W CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Sicong, Yu Xia, Wagih Abu Rowin, Ivan Marusic, Richard Sandberg, Daniel Chung i Nicholas Hutchins. "Heat Transfer Coefficient Estimation for Turbulent Boundary Layers". W 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/3969498.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Čarnogurská, Mária, Miroslav Příhoda, Romana Dobáková i Tomáš Brestovič. "Model of heat losses from underground heat distribution system". W 36TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. Author(s), 2017. http://dx.doi.org/10.1063/1.5004337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Urban, F., P. Muškát i J. Bereznai. "Heat plant as a heat source of the centralized heat supply with high efficiency". W THE MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMOMECHANICS (35MDFMT): Proceedings of the 35th Meeting of Departments of Fluid Mechanics and Thermomechanics. Author(s), 2016. http://dx.doi.org/10.1063/1.4963059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Malcho, Milan, Richard Lenhard, Katarína Kaduchová, Dávid Hečko i Stanislav Gavlas. "Heat recovery systems". W 38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Louda, P., i J. Příhoda. "Study on Performance of Various Turbulent Heat Transfer Closures". W Topical Problems of Fluid Mechanics 2020. Institute of Thermomechanics, AS CR, v.v.i., 2020. http://dx.doi.org/10.14311/tpfm.2020.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Faccanoni, Gloria, Cedric Galusinski i Louis Lamerand. "Thermal Diffusion and Phase Change in a Heat Exchanger". W Topical Problems of Fluid Mechanics 2021. Institute of Thermomechanics of the Czech Academy of Sciences, 2021. http://dx.doi.org/10.14311/tpfm.2021.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Heat Fluid mechanics"

1

Wang, Ting. Fluid Mechanics and Heat Transfer in the Transitional Boundary Layer. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada338920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

J. Rutqvist, C.F. Tsang i Y. Tsang. Analysis of Coupled Multiphase Fluid Flow, Heat Transfer and Mechanical Deformation at the Yucca Mountain Drift Scale Test. Office of Scientific and Technical Information (OSTI), maj 2005. http://dx.doi.org/10.2172/850440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii