Gotowa bibliografia na temat „Heat Fluid mechanics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Heat Fluid mechanics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Heat Fluid mechanics"
I., E., Dale A. Anderson, John C. Tannehill i Richard H. Pletcher. "Computational Fluid Mechanics and Heat Transfer." Mathematics of Computation 46, nr 174 (kwiecień 1986): 764. http://dx.doi.org/10.2307/2008017.
Pełny tekst źródłaSchmidt, Frank W. "Computational fluid mechanics and heat transfer". International Journal of Heat and Fluid Flow 7, nr 3 (wrzesień 1986): 239. http://dx.doi.org/10.1016/0142-727x(86)90028-7.
Pełny tekst źródłaSchmidt, Frank W. "Computational fluid mechanics and heat transfer". International Journal of Heat and Fluid Flow 7, nr 1 (marzec 1986): 27. http://dx.doi.org/10.1016/0142-727x(86)90038-x.
Pełny tekst źródłaZamora, Blas, Antonio S. Kaiser i Pedro G. Vicente. "Improvement in Learning on Fluid Mechanics and Heat Transfer Courses Using Computational Fluid Dynamics". International Journal of Mechanical Engineering Education 38, nr 2 (kwiecień 2010): 147–66. http://dx.doi.org/10.7227/ijmee.38.2.6.
Pełny tekst źródłaNgo, C. C., M. J. Voon i F. C. Lai. "Online heat transfer and fluid mechanics laboratory". Computer Applications in Engineering Education 13, nr 1 (2005): 1–9. http://dx.doi.org/10.1002/cae.20025.
Pełny tekst źródłaMeyer, Josua P. "Heat Transfer, Fluid Mechanics and Thermodynamics—HEFAT2011". Heat Transfer Engineering 34, nr 14 (14.11.2013): 1141–46. http://dx.doi.org/10.1080/01457632.2013.776444.
Pełny tekst źródłaPal, Rajinder. "Teaching Fluid Mechanics and Thermodynamics Simultaneously through Pipeline Flow Experiments". Fluids 4, nr 2 (1.06.2019): 103. http://dx.doi.org/10.3390/fluids4020103.
Pełny tekst źródłaMolerus, Otto. "Fluid Mechanics and Heat Transfer in Fluidized Beds". KONA Powder and Particle Journal 18 (2000): 121–30. http://dx.doi.org/10.14356/kona.2000018.
Pełny tekst źródłaReisel, John R. "Experimental heat transfer, fluid mechanics and thermodynamics 1993". Experimental Thermal and Fluid Science 11, nr 4 (listopad 1995): 414. http://dx.doi.org/10.1016/0894-1777(95)90004-7.
Pełny tekst źródłaGranados-Ortiz, Francisco-Javier, i Joaquín Ortega-Casanova. "Mechanical Characterisation and Analysis of a Passive Micro Heat Exchanger". Micromachines 11, nr 7 (9.07.2020): 668. http://dx.doi.org/10.3390/mi11070668.
Pełny tekst źródłaRozprawy doktorskie na temat "Heat Fluid mechanics"
Betancourt, Arturo. "Computational study of the heat transfer and fluid structure of a shell and tube heat exchanger". Thesis, Florida Atlantic University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10172609.
Pełny tekst źródłaA common technique to improve the performance of shell and tube heat exchangers (STHE) is by redirecting the flow in the shell side with a series of baffles. A key aspect in this technique is to understand the interaction of the fluid dynamics and heat transfer. Computational fluid dynamics simulations and experiments were performed to analysis the 3-dimensional flow and heat transfer on the shell side of an STHE with and without baffles. Although, it was found that there was a small difference in the average exit temperature between the two cases, the heat transfer coefficient was locally enhanced in the baffled case due to flow structures. The flow in the unbaffled case was highly streamed, while for the baffled case the flow was a highly complex flow with vortex structures formed by the tip of the baffles, the tubes, and the interaction of flow with the shell wall.
Horton, F. G. "Aerodynamics and heat transfer of turbine blading". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375214.
Pełny tekst źródłaAmin, Norsarahaida. "Oscillation-induced mean flows and heat transfer". Thesis, University of East Anglia, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329339.
Pełny tekst źródłaGolter, Paul B. "Combining modern learning pedagogies in fluid mechanics and heat transfer". Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Summer2006/p%5Fgolter%5F063006.pdf.
Pełny tekst źródłaLowdon, A. "Flow induced vibrations of tube arrays in heat exchangers". Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234773.
Pełny tekst źródłaRizvi, Syed Mahdi Abbas. "Prediction of flow, combustion and heat transfer in pulverised coal flames". Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/8946.
Pełny tekst źródłaKarabay, Hasan. "Flow and heat transfer in cover-plate pre-swirl rotor-stator system". Thesis, University of Bath, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242797.
Pełny tekst źródłaMalin, Michael Ronald. "Turbulence modelling for flow and heat transfer in jets, wakes and plumes". Thesis, University of London, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287796.
Pełny tekst źródłaLloyd, S. "Fluid flow and heat transfer characteristics in the entrance regions of circular pipes". Thesis, Cardiff University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370795.
Pełny tekst źródłaCole, Brian D. "Transient performance of parallel-flow and cross-flow direct transfer type heat exchangers with a step temperature change on the minimum capacity rate fluid stream. /". Online version of thesis, 1995. http://hdl.handle.net/1850/11924.
Pełny tekst źródłaKsiążki na temat "Heat Fluid mechanics"
1936-, Anderson Dale A., i Pletcher Richard H, red. Computational fluid mechanics and heat transfer. Wyd. 2. Washington, DC: Taylor & Francis, 1997.
Znajdź pełny tekst źródłaAnderson, Dale A., John C. Tannehill, Richard H. Pletcher, Munipalli Ramakanth i Vijaya Shankar. Computational Fluid Mechanics and Heat Transfer. Fourth edition. | Boca Raton, FL : CRC Press, 2020. | Series: Computational and physical processes in mechanics and thermal sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781351124027.
Pełny tekst źródłaRaju, K. S. N. Fluid Mechanics, Heat Transfer, and Mass Transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470909973.
Pełny tekst źródłaEngineering thermofluids: Thermodynamics, fluid mechanics, and heat transfer. Berlin: Springer, 2005.
Znajdź pełny tekst źródłaR, Welty James, i Aziz Abdul S, red. Introduction to thermal and fluid engineering. New York: Oxford University Press, 2006.
Znajdź pełny tekst źródłaMeeting, American Society of Mechanical Engineers Winter. Symbolic computation in fluid mechanics and heat transfer. New York: American Society of Mechanical Engineers, 1988.
Znajdź pełny tekst źródłaWorld Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (2nd 1991 Dubrovnik, Croatia). Experimental heat transfer, fluid mechanics, and thermodynamics 1991. Redaktorzy Keffer J. F, Shah Ramesh K i Ganić Ejup N. New York: Elsevier, 1991.
Znajdź pełny tekst źródłaLidia, Palese, red. Stability criteria for fluid flows. New Jersey: World Scientific, 2009.
Znajdź pełny tekst źródłaÇengel, Yunus A. Fundamentals of thermal-fluid sciences. Wyd. 3. Boston: McGraw-Hill, 2008.
Znajdź pełny tekst źródłaÇengel, Yunus A. Fundamentals of thermal-fluid sciences. Boston: McGraw-Hill, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Heat Fluid mechanics"
Husain, Afzal, i Kwang-Yong Kim. "Microchannel Heat Sinking: Analysis and Optimization". W Fluid Machinery and Fluid Mechanics, 185–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_25.
Pełny tekst źródłaZhang, Yangjun, Weilin Zhuge, Shuyong Zhang i Jianzhong Xu. "Through Flow Models for Engine Turbocharging and Exhaust Heat Recovery". W Fluid Machinery and Fluid Mechanics, 227–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_32.
Pełny tekst źródłaKang, Ho-Keun, Soo-Whan Ahn, Bachtiar-Krishna-Putra Ary i Jong-Woong Choi. "Swirl Flow and Heat Transfer Through Square Duct with Twisted Tape Insert". W Fluid Machinery and Fluid Mechanics, 122–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_16.
Pełny tekst źródłaKleinstreuer, Clement. "Biofluid Flow and Heat Transfer". W Fluid Mechanics and Its Applications, 481–522. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_9.
Pełny tekst źródłaZappoli, Bernard, Daniel Beysens i Yves Garrabos. "Basic Equation of Fluid Mechanics". W Heat Transfers and Related Effects in Supercritical Fluids, 379–411. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9187-8_21.
Pełny tekst źródłaKowalewski, Tomasz, Phillip Ligrani, Andreas Dreizler, Christof Schulz i Uwe Fey. "Temperature and Heat Flux". W Springer Handbook of Experimental Fluid Mechanics, 487–561. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-30299-5_7.
Pełny tekst źródłaToschi, F., R. Tripiccione i R. Benzi. "Heat Transfer in Rayleigh-Bénard Systems". W Fluid Mechanics and Its Applications, 425–28. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5118-4_105.
Pełny tekst źródłaDeepesh Patidar, Ravindra Pardeshi, Laltu Chandra i Rajiv Shekhar. "Solar Convective Furnace for Heat Treatment of Aluminium". W Fluid Mechanics and Fluid Power – Contemporary Research, 1531–41. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_146.
Pełny tekst źródłaRomagnoli, A., i R. M. F. Botas. "Heat Transfer in an Automotive Turbocharger Under Constant Load Points: an Experimental and Computational Investigation". W Fluid Machinery and Fluid Mechanics, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_1.
Pełny tekst źródłaDelil, A. A. M. "Thermal Scaling of Two-Phase Heat Transport Systems for Space: Predictions Versus Results of Experiments". W Microgravity Fluid Mechanics, 469–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_49.
Pełny tekst źródłaStreszczenia konferencji na temat "Heat Fluid mechanics"
"Modelling of fluid flow and heat distribution in a specific heat exchanger". W Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-209.
Pełny tekst źródłaAyyaswamy, P. S. "Biotransport: Fluid Mechanics, Heat and Mass Transfer". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53178.
Pełny tekst źródłaSuzuki, Y., i T. Inoue. "Flow and heat transfer characteristics of tornado-like vortex flow". W ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06028.
Pełny tekst źródła"Fluid mechanics, turbulence, wind power". W CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.910.
Pełny tekst źródłaWang, Sicong, Yu Xia, Wagih Abu Rowin, Ivan Marusic, Richard Sandberg, Daniel Chung i Nicholas Hutchins. "Heat Transfer Coefficient Estimation for Turbulent Boundary Layers". W 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/3969498.
Pełny tekst źródłaČarnogurská, Mária, Miroslav Příhoda, Romana Dobáková i Tomáš Brestovič. "Model of heat losses from underground heat distribution system". W 36TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. Author(s), 2017. http://dx.doi.org/10.1063/1.5004337.
Pełny tekst źródłaUrban, F., P. Muškát i J. Bereznai. "Heat plant as a heat source of the centralized heat supply with high efficiency". W THE MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMOMECHANICS (35MDFMT): Proceedings of the 35th Meeting of Departments of Fluid Mechanics and Thermomechanics. Author(s), 2016. http://dx.doi.org/10.1063/1.4963059.
Pełny tekst źródłaMalcho, Milan, Richard Lenhard, Katarína Kaduchová, Dávid Hečko i Stanislav Gavlas. "Heat recovery systems". W 38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114757.
Pełny tekst źródłaLouda, P., i J. Příhoda. "Study on Performance of Various Turbulent Heat Transfer Closures". W Topical Problems of Fluid Mechanics 2020. Institute of Thermomechanics, AS CR, v.v.i., 2020. http://dx.doi.org/10.14311/tpfm.2020.018.
Pełny tekst źródłaFaccanoni, Gloria, Cedric Galusinski i Louis Lamerand. "Thermal Diffusion and Phase Change in a Heat Exchanger". W Topical Problems of Fluid Mechanics 2021. Institute of Thermomechanics of the Czech Academy of Sciences, 2021. http://dx.doi.org/10.14311/tpfm.2021.008.
Pełny tekst źródłaRaporty organizacyjne na temat "Heat Fluid mechanics"
Wang, Ting. Fluid Mechanics and Heat Transfer in the Transitional Boundary Layer. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada338920.
Pełny tekst źródłaJ. Rutqvist, C.F. Tsang i Y. Tsang. Analysis of Coupled Multiphase Fluid Flow, Heat Transfer and Mechanical Deformation at the Yucca Mountain Drift Scale Test. Office of Scientific and Technical Information (OSTI), maj 2005. http://dx.doi.org/10.2172/850440.
Pełny tekst źródła