Artykuły w czasopismach na temat „High Exciton Binding Energy (60 meV)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „High Exciton Binding Energy (60 meV)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Титов, В. В., А. А. Лисаченко, И. Х. Акопян, М. Э. Лабзовская та Б. В. Новиков. "Долгоживущие центры фотокатализа, создаваемые в ZnO резонансным возбуждением экситона". Физика твердого тела 61, № 11 (2019): 2158. http://dx.doi.org/10.21883/ftt.2019.11.48422.537.
Pełny tekst źródłaShokuhfar, Ali, Javad Samei, A. Esmaielzadeh Kandjani, and Mohammad Reza Vaezi. "Synthesis of ZnO Nanoparticles via Sol-Gel Process Using Triethanolamine as a Novel Surfactant." Defect and Diffusion Forum 273-276 (February 2008): 626–31. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.626.
Pełny tekst źródłaTNEH, S. S., H. ABU HASSAN, K. G. SAW, F. K. YAM, and Z. HASSAN. "STRUCTURAL AND OPTICAL PROPERTIES OF LARGE-SCALE ZnO NANOWIRES AND NANOSHEETS PREPARED BY DRY THERMAL OXIDATION." Surface Review and Letters 16, no. 06 (2009): 901–4. http://dx.doi.org/10.1142/s0218625x09013451.
Pełny tekst źródłaTruong, Vo Doan Thanh, Thi Thanh Truc Nguyen, Thanh Lan Vo, Hoang Trung Huynh, and Thi Kim Hang Pham. "Effects of Growth Temperature on Morphological and Structural Properties of ZnO Films." Journal of Technical Education Science, no. 72A (October 28, 2022): 39–44. http://dx.doi.org/10.54644/jte.72a.2022.1238.
Pełny tekst źródłaZayana, N. Y., and M. Rusop. "Synthesis of ZnO Complex Structures at Different Molar Ratio of Zn (NO3)2 and KOH by Precipitation Method." Advanced Materials Research 576 (October 2012): 330–33. http://dx.doi.org/10.4028/www.scientific.net/amr.576.330.
Pełny tekst źródłaVyas, Sumit. "A Short Review on Properties and Applications of Zinc Oxide Based Thin Films and Devices : ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors." Johnson Matthey Technology Review 64, no. 2 (2020): 202–18. http://dx.doi.org/10.1595/205651320x15694993568524.
Pełny tekst źródłaQue, Miaoling, Chong Lin, Jiawei Sun, Lixiang Chen, Xiaohong Sun, and Yunfei Sun. "Progress in ZnO Nanosensors." Sensors 21, no. 16 (2021): 5502. http://dx.doi.org/10.3390/s21165502.
Pełny tekst źródłaTran, Thi Ha, Thi Huyen Trang Nguyen, Manh Hong Nguyen, et al. "Synthesis of ZnO/Au Nanorods for Self Cleaning Applications." Journal of Nanoscience and Nanotechnology 21, no. 4 (2021): 2621–25. http://dx.doi.org/10.1166/jnn.2021.19110.
Pełny tekst źródłaKim, Dong Chan, Bo Hyun Kong, Young Yi Kim, Hyung Koun Cho, Jeong Yong Lee, and Dong Jun Park. "Effect of Buffer Thickness on the Formation of ZnO Nanorods Grown by MOCVD." Solid State Phenomena 124-126 (June 2007): 101–4. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.101.
Pełny tekst źródłaDas, S., S. Sultana, I. Akter, SC Mazumdar, MA Rahman, and K. Kali. "Impact of Thickness and Substrate on Optical Properties of Zno Thin Films." Bangladesh Journal of Physics 27, no. 1 (2020): 59–68. http://dx.doi.org/10.3329/bjphy.v27i1.49726.
Pełny tekst źródłaZolfaghari, Mahmoud, and Mahshid Chireh. "Effect of Mn Dopant on Lattice Parameters and Band Gap Energy of Semiconductor ZnO Nanoparticles." Advanced Materials Research 829 (November 2013): 784–89. http://dx.doi.org/10.4028/www.scientific.net/amr.829.784.
Pełny tekst źródłaZhang, Lei, Liang Heng Wang, Ming Kai Li, Xun Zhong Shang, and Yun Bin He. "Structural and Optical Properties of ZnO1-xSx Thin Films Grown by Pulse Laser Deposition on Glass Substrates." Materials Science Forum 787 (April 2014): 18–22. http://dx.doi.org/10.4028/www.scientific.net/msf.787.18.
Pełny tekst źródłaSingh, Nagendra Pratap, S. A. Shivashankar, and Rudra Pratap. "Defect Driven Emission from ZnO Nano Rods Synthesized by Fast Microwave Irradiation Method for Optoelectronic Applications." MRS Proceedings 1633 (2014): 75–80. http://dx.doi.org/10.1557/opl.2014.254.
Pełny tekst źródłaMahendra, Robert, Mariesta Arianti, Dyah Sawitri, and Doty Dewi Risanti. "Synthesis of Various ZnO Nanotree Morphologies through PEG-Assisted Co-Precipitation Method." Advanced Materials Research 1112 (July 2015): 66–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1112.66.
Pełny tekst źródłaOng, Si Ci, Usman Ilyas, and Rajdeep Singh Rawat. "Nanofabrication using home-made RF plasma coupled chemical vapour deposition system." International Journal of Modern Physics: Conference Series 32 (January 2014): 1460342. http://dx.doi.org/10.1142/s2010194514603421.
Pełny tekst źródłaAbdullahi, Sabiu Said, Garba Shehu Musa Galadanci, Norlaily Mohd Saiden, and Josephine Ying Chyi Liew. "Assessment of Magnetic Properties between Fe and Ni Doped ZnO Nanoparticles Synthesized by Microwave Assisted Synthesis Method." Solid State Phenomena 317 (May 2021): 119–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.317.119.
Pełny tekst źródłaVerma, K. C., Navdeep Goyal, and R. K. Kotnala. "Lattice defect-formulated ferromagnetism and UV photo-response in pure and Nd, Sm substituted ZnO thin films." Physical Chemistry Chemical Physics 21, no. 23 (2019): 12540–54. http://dx.doi.org/10.1039/c9cp02285f.
Pełny tekst źródłaАгекян, В. Ф., А. Ю. Серов та Н. Г. Философов. "Оптические спектры кристаллов GaSe и GaS различной толщины". Физика твердого тела 60, № 6 (2018): 1211. http://dx.doi.org/10.21883/ftt.2018.06.46002.348.
Pełny tekst źródłaTsybeskov, Leonid. "Nanocrystalline Silicon for Optoelectronic Applications." MRS Bulletin 23, no. 4 (1998): 33–38. http://dx.doi.org/10.1557/s0883769400030244.
Pełny tekst źródłaLi, Teng, Hong Liang Pan, and Shi Liang Yang. "Simulation of Optical Properties of Ni-Doped ZnO Based on Density Functional Theory." Advanced Materials Research 846-847 (November 2013): 1931–34. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1931.
Pełny tekst źródłaQaid, Saif M. H., Hamid M. Ghaithan, Huda S. Bawazir, and Abdullah S. Aldwayyan. "Surface Passivation for Promotes Bi-Excitonic Amplified Spontaneous Emission in CsPb(Br/Cl)3 Perovskite at Room Temperature." Polymers 15, no. 9 (2023): 1978. http://dx.doi.org/10.3390/polym15091978.
Pełny tekst źródłaSkromme, B. J., and G. L. Martinez. "Optical Activation Behavior of Ion Implanted Acceptor Species in GaN." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 507–13. http://dx.doi.org/10.1557/s1092578300004701.
Pełny tekst źródłaKutrowska-Girzycka, J., E. Zieba-Ostój, D. Biegańska, et al. "Exploring the effect of dielectric screening on neutral and charged-exciton properties in monolayer and bilayer MoTe2." Applied Physics Reviews 9, no. 4 (2022): 041410. http://dx.doi.org/10.1063/5.0089192.
Pełny tekst źródłaHIRAI, T., K. EDAMATSU, T. ITOH, Y. HARADA, and S. HASHIMOTO. "EXCITONS IN COLLOIDAL CuI PARTICLES DISPERSED IN A KI CRYSTAL." International Journal of Modern Physics B 15, no. 28n30 (2001): 3789–92. http://dx.doi.org/10.1142/s0217979201008676.
Pełny tekst źródłaSun, Bosong, Wenjin Zhao, Tauno Palomaki, et al. "Evidence for equilibrium exciton condensation in monolayer WTe2." Nature Physics 18, no. 1 (2021): 94–99. http://dx.doi.org/10.1038/s41567-021-01427-5.
Pełny tekst źródłaHe, Fuli, Jia Li, Linyang Li, et al. "Quasiparticle band structures and optical properties of twisted bilayer MoS2." Europhysics Letters 136, no. 1 (2021): 17001. http://dx.doi.org/10.1209/0295-5075/ac35b9.
Pełny tekst źródłaLakshmi, R. Radha, D. Sruthi, K. Prithiv, S. Harippriya, and K. R. Aranganayagam. "Synthesis of ZnO and Ag/ZnO Nanorods: Characterization and Synergistic In Vitro Biocidal Studies." Advanced Science Letters 24, no. 8 (2018): 5490–95. http://dx.doi.org/10.1166/asl.2018.12135.
Pełny tekst źródłaAl-Ani, Ibrahim A. M., Khalil As’Ham, Lujun Huang, Andrey E. Miroshnichenko, and Haroldo T. Hattori. "Enhanced strong coupling of WSe2 monolayer by Bound State in the continuum." Journal of Physics: Conference Series 2172, no. 1 (2022): 012009. http://dx.doi.org/10.1088/1742-6596/2172/1/012009.
Pełny tekst źródłaRen, Yinjuan, Zhigao Huang, and Yue Wang. "Dynamic and giant bandgap renormalization dictates the transient optical response in perovskite quantum dots." Applied Physics Letters 121, no. 25 (2022): 251103. http://dx.doi.org/10.1063/5.0131286.
Pełny tekst źródłaDu, Aochen, Wenxiao Zhao, Yu Peng, et al. "Cs(Pb,Mn)Br3 Quantum Dots Glasses with Superior Thermal Stability for Contactless Electroluminescence Green−Emitting LEDs." Nanomaterials 13, no. 1 (2022): 17. http://dx.doi.org/10.3390/nano13010017.
Pełny tekst źródłaSu, Rui, Jun Wang, Jiaxin Zhao, et al. "Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites." Science Advances 4, no. 10 (2018): eaau0244. http://dx.doi.org/10.1126/sciadv.aau0244.
Pełny tekst źródłaYang, Feng, Kui Ying Li, Jing Zhi Sun, Mang Wang, Gang Wu, and Yong Zhao. "Direct Measurement and Identification of Nonradiative Processes in ZnO Nanocrystallines by Combining Photoacoustic Spectroscopy with Surface Photovoltage Spectroscopy." Advanced Materials Research 361-363 (October 2011): 831–39. http://dx.doi.org/10.4028/www.scientific.net/amr.361-363.831.
Pełny tekst źródłaChi, Le Ha, Pham Duy Long, Hoang Vu Chung, et al. "Galvanic-Cell-Based Synthesis and Photovoltaic Performance of ZnO-CdS Core-Shell Nanorod Arrays for Quantum Dots Sensitized Solar Cells." Applied Mechanics and Materials 618 (August 2014): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.618.64.
Pełny tekst źródłaBadran, Rashad I., Yas Al-Hadeethi, Ahmad Umar, et al. "Temperature-dependent heterojunction device characteristics of n-ZnO nanorods/p-Si assembly." Materials Express 10, no. 1 (2020): 29–36. http://dx.doi.org/10.1166/mex.2020.1595.
Pełny tekst źródłaSharma, Rakesh Kumar, Sandeep Patel, and Kamlesh Chandra Pargaien. "Mn-Doped ZnO Micro and Nanocrytals: Synthesis, Characterization and Properties." Advanced Materials Research 665 (February 2013): 182–88. http://dx.doi.org/10.4028/www.scientific.net/amr.665.182.
Pełny tekst źródłaKim, Yun Hae, Jin Woo Lee, Riichi Murakami, Dong Myung Lee, Jin Cheol Ha, and Pang Pang Wang. "Effect of Atmosphere Temperature on Physical Properties of ZnO/Ag/ZnO on PET Films." Advanced Materials Research 988 (July 2014): 125–29. http://dx.doi.org/10.4028/www.scientific.net/amr.988.125.
Pełny tekst źródłaSun, Ya Juan, and Wan Xing Wang. "Optical and Electrical Properties of P-Type N-Doped ZnO Film." Key Engineering Materials 609-610 (April 2014): 113–17. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.113.
Pełny tekst źródłaRabiee, Navid, Mojtaba Bagherzadeh, Amir Mohammad Ghadiri, et al. "Green Synthesis of ZnO NPs via Salvia hispanica: Evaluation of Potential Antioxidant, Antibacterial, Mammalian Cell Viability, H1N1 Influenza Virus Inhibition and Photocatalytic Activities." Journal of Biomedical Nanotechnology 16, no. 4 (2020): 456–66. http://dx.doi.org/10.1166/jbn.2020.2916.
Pełny tekst źródłaDawka, Sahil, Pengjun Duan, Raju Sapkota, and Chris Papadopoulos. "Thin Film Photodetectors Based on Zinc Oxide Nanoinks." ECS Meeting Abstracts MA2022-01, no. 31 (2022): 1329. http://dx.doi.org/10.1149/ma2022-01311329mtgabs.
Pełny tekst źródłaWei, M., D. Zhi, and J. L. MacManus-Driscoll. "Self Seeded ZnO Nanowire Growth by Ultrasonic Spray Assisted Chemical Vapour Deposition." MRS Proceedings 879 (2005). http://dx.doi.org/10.1557/proc-879-z10.2.
Pełny tekst źródłaTagliente, Maria Antonella, Marcello Massaro, Giovanni Mattei, et al. "On the Structural and Optical Properties of ZnO Nanoparticles Formed in Silica by Ion Implantation." MRS Proceedings 942 (2006). http://dx.doi.org/10.1557/proc-0942-w08-36.
Pełny tekst źródłaRebane, Y. T., Y. G. Shreter, and M. Albrecht. "Excitons Bound to Stacking Faults in Wurtzite GaN." MRS Proceedings 468 (1997). http://dx.doi.org/10.1557/proc-468-179.
Pełny tekst źródłaWang, Jian, Daniel Moses, Alan J. Heeger, N. Kirova, and S. Brazovski. "Electric Field Induced Ionization of the Exciton in Poly(Phenylene Vinylene)." MRS Proceedings 660 (2000). http://dx.doi.org/10.1557/proc-660-jj2.10.
Pełny tekst źródłaPanda, Nihar Ranjan, and Dojalisa Sahu. "Exhibition of novel photocatalytic activity and photoluminescence properties with high inhibition towards bacterial growth by hydrothermally grown ZnO nanorods." Current Nanoscience 16 (July 28, 2020). http://dx.doi.org/10.2174/1573413716999200728175722.
Pełny tekst źródłaJung, Eilho, Jin Cheol Park, Yu-Seong Seo, Ji-Hee Kim, Jungseek Hwang, and Young Hee Lee. "Unusually large exciton binding energy in multilayered 2H-MoTe2." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-08692-1.
Pełny tekst źródłaWang, Jue, Christina Manolatou, Yusong Bai, James Hone, Farhan Rana, and Xiaoyang Zhu. "Disorder of Excitons and Trions in Monolayer MoSe2." Journal of Chemical Physics, September 19, 2022. http://dx.doi.org/10.1063/5.0108001.
Pełny tekst źródłaSkromme, B. J., J. Jayapalan, D. Wang, and O. F. Sankey. "Magnetoluminescence and Resonant Electronic Raman Scattering Investigation of Donors and Excitons in Hydride Vpe and Mocvd GaN." MRS Proceedings 482 (1997). http://dx.doi.org/10.1557/proc-482-537.
Pełny tekst źródłaSkromme, B. J. "Photoluminescence, Magnetospectroscopy, and Resonant Electronic Raman Studies of Heteroepitaxial Gallium Nitride." MRS Internet Journal of Nitride Semiconductor Research 4, no. 1 (1999). http://dx.doi.org/10.1557/s1092578300000715.
Pełny tekst źródłaWang, Fanjie, Chong Wang, Andrey Chaves, et al. "Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-25941-5.
Pełny tekst źródłaChu, Zihao, Huanqing Chen, Xinrui Mao, Yanping Li, Wanjin Xu, and Guang Zhao Ran. "Anisotropic Exciton-Polaritons in 2D Single-Crystalline PEA2PbBr4 Perovskites at Room Temperature." Journal of Physics D: Applied Physics, January 31, 2023. http://dx.doi.org/10.1088/1361-6463/acb783.
Pełny tekst źródła