Gotowa bibliografia na temat „High pressure gas Adsorption”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „High pressure gas Adsorption”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "High pressure gas Adsorption"
Chen, Liwei, Mingzhen Zhao, Xiaohua Li i Yuan Liu. "Impact research of CH4 replacement with CO2 in hydrous coal under high pressure injection". Mining of Mineral Deposits 16, nr 1 (30.03.2022): 121–26. http://dx.doi.org/10.33271/mining16.01.121.
Pełny tekst źródłaVermesse, J., D. Vidal i P. Malbrunot. "Gas Adsorption on Zeolites at High Pressure". Langmuir 12, nr 17 (styczeń 1996): 4190–96. http://dx.doi.org/10.1021/la950283m.
Pełny tekst źródłaGiacobbe, F. W. "A high‐pressure volumetric gas adsorption system". Review of Scientific Instruments 62, nr 9 (wrzesień 1991): 2186–92. http://dx.doi.org/10.1063/1.1142336.
Pełny tekst źródłaJia, Bao, Jyun-Syung Tsau i Reza Barati. "Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales". SPE Journal 23, nr 04 (30.05.2018): 1452–68. http://dx.doi.org/10.2118/191121-pa.
Pełny tekst źródłaEkundayo, Jamiu M., Reza Rezaee i Chunyan Fan. "Measurement of gas contents in shale reservoirs – impact of gas density and implications for gas resource estimates". APPEA Journal 61, nr 2 (2021): 606. http://dx.doi.org/10.1071/aj20177.
Pełny tekst źródłaHu, Ke, i Helmut Mischo. "Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale". Adsorption 28, nr 1-2 (luty 2022): 27–39. http://dx.doi.org/10.1007/s10450-021-00350-8.
Pełny tekst źródłaLiu, Zhen, Qingbo Gu, He Yang, Jiangwei Liu, Guoliang Luan, Peng Hu i Zehan Yu. "Gas–Water Two-Phase Displacement Mechanism in Coal Fractal Structures Based on a Low-Field Nuclear Magnetic Resonance Experiment". Sustainability 15, nr 21 (30.10.2023): 15440. http://dx.doi.org/10.3390/su152115440.
Pełny tekst źródłaWynnyk, Kyle G., Behnaz Hojjati, Payman Pirzadeh i Robert A. Marriott. "High-pressure sour gas adsorption on zeolite 4A". Adsorption 23, nr 1 (18.11.2016): 149–62. http://dx.doi.org/10.1007/s10450-016-9841-6.
Pełny tekst źródłaGuo, Wenjing, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu i Huixiao Hong. "Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials". Nanomaterials 12, nr 19 (27.09.2022): 3376. http://dx.doi.org/10.3390/nano12193376.
Pełny tekst źródłaCheng, De Zhu, Ai Ling Du i Ai Qin Du. "The Influence of Coal Adsorbing Methane and Carbon Dioxide on Gas Outburst". Advanced Materials Research 1049-1050 (październik 2014): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.101.
Pełny tekst źródłaRozprawy doktorskie na temat "High pressure gas Adsorption"
Navaei, Milad. "Quartz crystal microbalance adsorption apparatus for high pressure gas adsorption measurements in nanomaterials". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41057.
Pełny tekst źródłaDe, Angelis Giacomo. "Modeling of a differential volumetric system for high pressure gas adsorption". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23313/.
Pełny tekst źródłaTang, Xu. "Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74237.
Pełny tekst źródłaPh. D.
Ceteroni, Ilaria. "High-pressure adsorption differential volumetric apparatus (HP-ADVA) for accurate equilibrium measurements". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22274/.
Pełny tekst źródłaBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause i Joaquín Silvestre-Albero. "Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-221847.
Pełny tekst źródłaBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause i Joaquín Silvestre-Albero. "Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons". Royal Society of Chemistry, 2016. https://tud.qucosa.de/id/qucosa%3A30232.
Pełny tekst źródłaMinhas, Rizwan. "Spin Crossover (SCO) Hofmann clathrate with switchable property, for the design of a new gas storage/separation material". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3049.
Pełny tekst źródłaMetal Organic Frameworks (MOFs) have been identified in recent years as advanced alternatives for gas storage, molecular separations, sensing or catalysis, thanks to their remarkable host-guest properties and versatility. More recently, the combination of the ferrous spin-crossover (SCO) with MOFs has made it possible to obtain switchable porous architectures where the electron spin of the iron(II) metal centers can be controlled by different stimuli. This work focuses on one of these SCO MOFs, also called Hofmann clathrates, (FeNi[CN]4.Pyrazine) with a switchable property that is studied here for its gas storage and separation properties.This material is first synthesized using an environmentally friendly mixing of reagents, employing iron and nickel salts with pyrazine as the organic linker. The resulting microcrystalline powder is then characterized via different experimental techniques including nitrogen and argon porosimetry, thermogravimetry analysis (TGA), X-ray diffraction, scanning electron microscopy (SEM), and IR spectroscopy, thus confirming the successful synthesis of this material.One of the aims of this research was to design and construct a novel homemade volumetric setup to study the high-pressure adsorption of pure gases and mixtures allowing to simultaneously visualize the sample by means of a camera attached near the sapphire window of the measuring cell. First, high pressure (up to 7 MPa) pure gases (CO2, CH4 & N2) adsorption in (FeNi[CN]4.Pz) were conducted at various temperatures and results have shown an interesting structural flexibility of this MOF during CO2 adsorption, whatever the initial spin state of the material. These structural transitions upon CO2 adsorption were then observed using in-situ vibrational spectroscopy techniques: FTIR and Raman spectroscopy. Moreover, it was shown that the SCO property of this material is well associated with the changes in color of the sample itself showing that the combined adsorption/image analysis technique is a useful tool to investigate the SCO change due to adsorption for this type of material.The adsorption measurement of gas mixtures could be achieved by utilizing the same homemade manometric setup coupled with an IR gas analyzer. Experimental data demonstrated that (FeNi[CN]4.Pz) has a preferential adsorption for CO2 over CH4, making it a suitable candidate for CO2/CH4 separation in some conditions. It was shown that this preferential adsorption of CO2 is enhanced by the structural flexibility of the material.In addition to these experimental results, modeling of both equilibrium adsorption, kinetics of adsorption and selectivity was performed and compared to the measured properties.In summary, this thesis presents a comprehensive study of (FeNi[CN]4.Pz), highlighting its synthesis, characterization, structural flexibility, and exceptional performance in CO2/CH4 as well as CO2/N2 separations, highlighted by both experimental and theoretical approaches
Ngeleka, Tholakele Prisca. "Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka". Thesis, North-West University, 2005. http://hdl.handle.net/10394/1416.
Pełny tekst źródłaThesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
Ngeleka, Tholakele Prisca. "An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka". Thesis, North-West University, 2008. http://hdl.handle.net/10394/4108.
Pełny tekst źródłaThesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
Mutasim, Z. Z. "Separation of gas mixtures by pressure swing adsorption". Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379811.
Pełny tekst źródłaKsiążki na temat "High pressure gas Adsorption"
United States. National Aeronautics and Space Administration., red. Ceramic high pressure gas path seal. Lynn, MA: GE Aircraft Engines, 1987.
Znajdź pełny tekst źródłaL, Laganelli A., i NASA Glenn Research Center, red. High pressure regenerative turbine engine: 21st century propulsion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaL, Laganelli A., i NASA Glenn Research Center, red. High pressure regenerative turbine engine: 21st century propulsion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaHume, H. B. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay. Pinawa, Manitoba: Whitshell Laboratories, 1997.
Znajdź pełny tekst źródłaPerryman, Adrian Colin. An investigation of catalyst preparative methods and a study of high pressure co adsorption. Uxbridge: Brunel University, 1992.
Znajdź pełny tekst źródłaMorgan, G. J. High pressure gas permeation and liquid diffusion studies of Coflon and Tefzel thermoplastics. Austin, Tex: [Texas Research Institute, 1997.
Znajdź pełny tekst źródłaFalcini, Mark R. A. A study of gas phase ion chemistry using high pressure mass spectrometry. [s.l.]: typescript, 1992.
Znajdź pełny tekst źródłaJ, Locke Randy, i NASA Glenn Research Center, red. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Znajdź pełny tekst źródłaJ, Locke Randy, i NASA Glenn Research Center, red. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Znajdź pełny tekst źródłaJ, Locke Randy, i NASA Glenn Research Center, red. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "High pressure gas Adsorption"
Chou, Cheng-tung, Yu-Hau Shih, Yu-Jie Huang i Hong-sung Yang. "Separation of Carbon Dioxide from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature". W Advances in Intelligent Systems and Computing, 157–69. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11457-6_11.
Pełny tekst źródłaBräuer, P., M. Salem, M. v. Szombathely, M. Heuchel, P. Halting i M. Jaroniec. "Problems Associated with Thermodynamic Analysis of Gas-Solid Adsorption Isotherms Measured at High Pressures". W The Kluwer International Series in Engineering and Computer Science, 101–8. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_11.
Pełny tekst źródłaMartin, J. R., C. F. Gottzmann, F. Notaro i H. A. Stewart. "Gas Separation by Pressure Swing Adsorption". W Advances in Cryogenic Engineering, 1071–86. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_120.
Pełny tekst źródłaKuhs, W. F. "The High Pressure Crystallography of Gas Hydrates". W High-Pressure Crystallography, 475–94. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2102-2_29.
Pełny tekst źródłaSchröter, H. J., i H. Jüntgen. "Gas Separation by Pressure Swing Adsorption Using Carbon Molecular Sieves". W Adsorption: Science and Technology, 269–83. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2263-1_15.
Pełny tekst źródłaZhang, Bao, Xiaotong Yu, Hongtao Jing, Xuesong Wang, Xiang Si i Dabin Fan. "Annular pressure evaluation of high temperature high pressure gas well". W Proceedings of the 2023 9th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2023), 443–50. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-415-0_47.
Pełny tekst źródłaSchmidt, Jürgen. "Sizing of High-Pressure Safety Valves for Gas Service". W Industrial High Pressure Applications, 369–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652655.ch15.
Pełny tekst źródłaRiedel, Hermann. "Cavity Nucleation Assisted by Internal Gas Pressure". W Fracture at High Temperatures, 131–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82961-1_9.
Pełny tekst źródłade Groot, J. J., i J. A. J. M. van Vliet. "Influence of a Buffer Gas on Discharge Properties". W The High-Pressure Sodium Lamp, 128–69. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-09196-6_5.
Pełny tekst źródłaCzepirski, Leszek, Barbara Łaciak i Stanisław Hołda. "Analysis of High-Pressure Adsorption Equilibria and Kinetics". W The Kluwer International Series in Engineering and Computer Science, 219–26. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_26.
Pełny tekst źródłaStreszczenia konferencji na temat "High pressure gas Adsorption"
Ojong, Ojong Elias, Preniyobo Diepriye Benibo, Fidelis Ibiang Abam i Silas Shamaye Samuel. "Enhancing Carbon (iv) Oxide Adsorption from Flue Gas Mixture at Elevated Temperature Using Composite of Nanoparticles". W Africa International Conference on Clean Energy and Energy Storage, 279–89. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-3cwdqg.
Pełny tekst źródłaChotchuangchutchaval, Thana, Pramot Wongnoopanao, Sarayut Kleepbua, Sitthichai Sarannat, Thossaporn Kaewwichit, Naratip Sangsai, Sittichai Limrungruengrat i Nathapong Sukhawipat. "High-Efficiency Oxygen Production Through Autotuned Pressure Swing Adsorption Technology". W 2024 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 334–38. IEEE, 2024. https://doi.org/10.1109/ri2c64012.2024.10784397.
Pełny tekst źródłaTsau, Jyun-Syung, Reza Ghahfarokhi Barati, Jose Zaghloul, Mubarak M. Alhajeri, Kyle Bradford i Brian Nicoud. "Experimental Investigation of High Pressure, High Temperature (HPHT) Adsorption of Methane and Natural Gas on Shale Gas Samples". W ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210981-ms.
Pełny tekst źródłaMURATA, K., i K. KANEKO. "DETERMINATION OF THE INTERFACE BETWEEN GAS AND ADSORBED PHASES IN HIGH PRESSURE GAS ADSORPTION". W Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0063.
Pełny tekst źródłaCZEPIRSKI, L., i B. ŁACIAK. "INTERPRETATION OF HIGH - PRESSURE GAS ADSORPTION EQUILIBRIUM AND KINETIC DATA FOR ACTIVE CARBONS". W Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0033.
Pełny tekst źródłaKumar Raman, Senthil. "Fatigue Analysis of a Pressure Swing Adsorption Vessel". W ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-107586.
Pełny tekst źródłaHe, Min, Zaoxiao Zhang i Guangxu Cheng. "The Adsorption Study of Hydrogen on Iron and Vanadium". W ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65582.
Pełny tekst źródła"Carbon Dioxide Capture from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature". W Special Session on Applications of Modeling and Simulation to Climatic Change and Environmental Sciences. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004624705290536.
Pełny tekst źródłaWang, Jinjie, Qi Hua Ng, Hon Chung Lau i Ludger Paul Stubbs. "Experimental Study on Enhanced Shale Gas Recovery by Competitive Adsorption of CO-CH Under High-Temperature, High-Pressure Conditions". W Offshore Technology Conference Asia. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30270-ms.
Pełny tekst źródłaHedzyk, Nazarii, i Oleksandr Kondrat. "Low-Permeable Reservoirs as High Potential Assets for EGR". W SPE Eastern Europe Subsurface Conference. SPE, 2021. http://dx.doi.org/10.2118/208555-ms.
Pełny tekst źródłaRaporty organizacyjne na temat "High pressure gas Adsorption"
George. PR-015-10600-R01 Proposed Sampling Methods for Supercritical Natural Gas Streams. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 2010. http://dx.doi.org/10.55274/r0010981.
Pełny tekst źródłaNygren, David Robert, David Robert Nygren i Ben Jones. High Pressure Xenon Gas TPC Development. Office of Scientific and Technical Information (OSTI), lipiec 2018. http://dx.doi.org/10.2172/1504727.
Pełny tekst źródłaDennis G. Whyte. Disruption mitigation using high pressure gas jets. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/917556.
Pełny tekst źródłaMohayai, Tanaz. High-Pressure Gas TPC for DUNE Near Detector. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1524814.
Pełny tekst źródłade Bruijn, T. J. W., J. D. Chase i W. H. Dawson. Gas holdup in a tubular reactor at high pressure. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/302663.
Pełny tekst źródłaGiokaris, N., Konstantin Goulianos, D. Anderson, S. Cihangir, A. Para, J. Zimmerman, D. Carlsmith i in. High pressure sampling gas calorimetry for the SDC calorimeter. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/1847368.
Pełny tekst źródłaWuest, C. R., i C. D. Hendricks. A control system for maintaining high stability in gas pressure. Office of Scientific and Technical Information (OSTI), wrzesień 1987. http://dx.doi.org/10.2172/5673903.
Pełny tekst źródłaBlander, M., L. Unger, A. Pelton i G. Eriksson. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas. Office of Scientific and Technical Information (OSTI), maj 1994. http://dx.doi.org/10.2172/10144532.
Pełny tekst źródłaFielder, Robert, Matthew Palmer, Wing Ng, Matthew Davis i Aditya Ringshia. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2004. http://dx.doi.org/10.21236/ada429586.
Pełny tekst źródłaNaber, Jeffrey D. HIGH BRAKE MEAN EFFECTIVE PRESSURE AND HIGH EFFICIENCY MICRO PILOT IGNITION NATURAL GAS ENGINE. Office of Scientific and Technical Information (OSTI), luty 2020. http://dx.doi.org/10.2172/1605097.
Pełny tekst źródła