Artykuły w czasopismach na temat „High pressure gas Adsorption”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „High pressure gas Adsorption”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Liwei, Mingzhen Zhao, Xiaohua Li i Yuan Liu. "Impact research of CH4 replacement with CO2 in hydrous coal under high pressure injection". Mining of Mineral Deposits 16, nr 1 (30.03.2022): 121–26. http://dx.doi.org/10.33271/mining16.01.121.
Pełny tekst źródłaVermesse, J., D. Vidal i P. Malbrunot. "Gas Adsorption on Zeolites at High Pressure". Langmuir 12, nr 17 (styczeń 1996): 4190–96. http://dx.doi.org/10.1021/la950283m.
Pełny tekst źródłaGiacobbe, F. W. "A high‐pressure volumetric gas adsorption system". Review of Scientific Instruments 62, nr 9 (wrzesień 1991): 2186–92. http://dx.doi.org/10.1063/1.1142336.
Pełny tekst źródłaJia, Bao, Jyun-Syung Tsau i Reza Barati. "Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales". SPE Journal 23, nr 04 (30.05.2018): 1452–68. http://dx.doi.org/10.2118/191121-pa.
Pełny tekst źródłaEkundayo, Jamiu M., Reza Rezaee i Chunyan Fan. "Measurement of gas contents in shale reservoirs – impact of gas density and implications for gas resource estimates". APPEA Journal 61, nr 2 (2021): 606. http://dx.doi.org/10.1071/aj20177.
Pełny tekst źródłaHu, Ke, i Helmut Mischo. "Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale". Adsorption 28, nr 1-2 (luty 2022): 27–39. http://dx.doi.org/10.1007/s10450-021-00350-8.
Pełny tekst źródłaLiu, Zhen, Qingbo Gu, He Yang, Jiangwei Liu, Guoliang Luan, Peng Hu i Zehan Yu. "Gas–Water Two-Phase Displacement Mechanism in Coal Fractal Structures Based on a Low-Field Nuclear Magnetic Resonance Experiment". Sustainability 15, nr 21 (30.10.2023): 15440. http://dx.doi.org/10.3390/su152115440.
Pełny tekst źródłaWynnyk, Kyle G., Behnaz Hojjati, Payman Pirzadeh i Robert A. Marriott. "High-pressure sour gas adsorption on zeolite 4A". Adsorption 23, nr 1 (18.11.2016): 149–62. http://dx.doi.org/10.1007/s10450-016-9841-6.
Pełny tekst źródłaGuo, Wenjing, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu i Huixiao Hong. "Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials". Nanomaterials 12, nr 19 (27.09.2022): 3376. http://dx.doi.org/10.3390/nano12193376.
Pełny tekst źródłaCheng, De Zhu, Ai Ling Du i Ai Qin Du. "The Influence of Coal Adsorbing Methane and Carbon Dioxide on Gas Outburst". Advanced Materials Research 1049-1050 (październik 2014): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.101.
Pełny tekst źródłaKasuya, F., i T. Tsuji. "High purity CO gas separation by pressure swing adsorption". Gas Separation & Purification 5, nr 4 (grudzień 1991): 242–46. http://dx.doi.org/10.1016/0950-4214(91)80031-y.
Pełny tekst źródłaCai, Hailiang, Peichao Li, Zhixin Ge, Yuxi Xian i Detang Lu. "A new method to determine varying adsorbed density based on Gibbs isotherm of supercritical gas adsorption". Adsorption Science & Technology 36, nr 9-10 (9.10.2018): 1687–99. http://dx.doi.org/10.1177/0263617418802665.
Pełny tekst źródłaJing, Tongling, Chuanqi Tao, Yanbin Wang, Huan Miao, Mingyu Xi, Xingchen Zhao i Haiyang Fu. "Energy Variation Features during the Isothermal Adsorption of Coal under High-Temperature and High-Pressure Conditions". Processes 11, nr 9 (23.08.2023): 2524. http://dx.doi.org/10.3390/pr11092524.
Pełny tekst źródłaWu, Xukun, Guangming Zhao, Youlin Xu, Xiangrui Meng i Xiang Cheng. "Research on Adsorption and Desorption Characteristics of Gas in Coal Rock Based on Nuclear Magnetic Resonance Technology". Geofluids 2022 (16.05.2022): 1–13. http://dx.doi.org/10.1155/2022/1277973.
Pełny tekst źródłaSalmachi, Alireza, i Manouchehr Haghighi. "Temperature effect on methane sorption and diffusion in coal: application for thermal recovery from coal seam gas reservoirs". APPEA Journal 52, nr 1 (2012): 291. http://dx.doi.org/10.1071/aj11021.
Pełny tekst źródłaHuang, Shijun, Yonghui Wu, Linsong Cheng, Hongjun Liu, Yongchao Xue i Guanyang Ding. "Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms". Geofluids 2018 (4.06.2018): 1–18. http://dx.doi.org/10.1155/2018/2186194.
Pełny tekst źródłaAprianti, Tine, Harrini Mutiara Hapsari, Debby Yulinar Permata, Selvia Aprilyanti, Justin Sobey, Kallan Pham, Srinivasan Kandadai i Hui Tong Chua. "Experimental study of gas adsorption using high-performance activated carbon: Propane adsorption isotherm". Teknomekanik 7, nr 1 (10.06.2024): 62–73. http://dx.doi.org/10.24036/teknomekanik.v7i1.28672.
Pełny tekst źródłaQu, Lina, Zhenzhen Wang i Long Liu. "Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal". Fire 6, nr 9 (11.09.2023): 355. http://dx.doi.org/10.3390/fire6090355.
Pełny tekst źródłaLi, Jing, Keliu Wu, Zhangxin Chen, Kun Wang, Jia Luo, Jinze Xu, Ran Li, Renjie Yu i Xiangfang Li. "On the Negative Excess Isotherms for Methane Adsorption at High Pressure: Modeling and Experiment". SPE Journal 24, nr 06 (5.08.2019): 2504–25. http://dx.doi.org/10.2118/197045-pa.
Pełny tekst źródłaShasha, Si, Wang Zhaofeng, Zhang Wenhao i Dai Juhua. "Study on Adsorption Model of Deep Coking Coal Based on Adsorption Potential Theory". Adsorption Science & Technology 2022 (8.08.2022): 1–13. http://dx.doi.org/10.1155/2022/9596874.
Pełny tekst źródłaDeng, Jia, Qi Zhang, Lan Zhang, Zijian Lyu, Yan Rong i Hongqing Song. "Investigation on the adsorption properties and adsorption layer thickness during CH4 flow driven by pressure gradient in nano-slits". Physics of Fluids 35, nr 1 (styczeń 2023): 016104. http://dx.doi.org/10.1063/5.0134419.
Pełny tekst źródłaXu, Wenjie, Xigui Zheng, Cancan Liu, Peng Li, Boyang Li, Kundai Michael Shayanowako, Jiyu Wang, Xiaowei Guo i Guowei Lai. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage". Sustainability 14, nr 21 (22.10.2022): 13699. http://dx.doi.org/10.3390/su142113699.
Pełny tekst źródłaAgarwal, R. K., K. A. G. Amankwah i J. A. Schwarz. "Analysis of adsorption entropies of high pressure gas adsorption data on activated carbon". Carbon 28, nr 1 (1990): 169–74. http://dx.doi.org/10.1016/0008-6223(90)90110-k.
Pełny tekst źródłaChang, Cheng, Jian Zhang, Haoran Hu, Deliang Zhang i Yulong Zhao. "Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs". Energies 15, nr 3 (27.01.2022): 944. http://dx.doi.org/10.3390/en15030944.
Pełny tekst źródłaDeyko, Gregory S., Valery N. Zakharov, Lev M. Glukhov, Dmitry O. Charkin, Dmitry Yu Kultin, Vladimir V. Chernyshev, Leonid A. Aslanov i Leonid M. Kustov. "High-Pressure Gas Adsorption on Covalent Organic Framework CTF-1". Crystals 14, nr 12 (10.12.2024): 1066. https://doi.org/10.3390/cryst14121066.
Pełny tekst źródłaKostroski, Kyle P., i Phillip C. Wankat. "High Recovery Cycles for Gas Separations by Pressure-Swing Adsorption". Industrial & Engineering Chemistry Research 45, nr 24 (listopad 2006): 8117–33. http://dx.doi.org/10.1021/ie060566h.
Pełny tekst źródłaKinigoma, B. S., i G. O. Ani. "Comparison of gas dehydration methods based on energy consumption". Journal of Applied Sciences and Environmental Management 20, nr 2 (25.07.2016): 253–58. http://dx.doi.org/10.4314/jasem.v20i2.4.
Pełny tekst źródłaYue, Jiwei, Zhaofeng Wang i Jinsheng Chen. "Dynamic response characteristics of water and methane during isobaric imbibition process in remolded coal containing methane". Energy Exploration & Exploitation 37, nr 1 (13.09.2018): 83–101. http://dx.doi.org/10.1177/0144598718798083.
Pełny tekst źródłaChen, Xuexi, Wenxuan Shan, Ruibang Sun i Liang Zhang. "Methane displacement characteristic of coal and its pore change in water injection". Energy Exploration & Exploitation 38, nr 5 (2.07.2020): 1647–63. http://dx.doi.org/10.1177/0144598720934052.
Pełny tekst źródłaKalman, Viktor, Johannes Voigt, Christian Jordan i Michael Harasek. "Hydrogen Purification by Pressure Swing Adsorption: High-Pressure PSA Performance in Recovery from Seasonal Storage". Sustainability 14, nr 21 (28.10.2022): 14037. http://dx.doi.org/10.3390/su142114037.
Pełny tekst źródłaZhang, Yongchun, Aiguo Hu, Pei Xiong, Hao Zhang i Zhonghua Liu. "Experimental Study of Temperature Effect on Methane Adsorption Dynamic and Isotherm". Energies 15, nr 14 (11.07.2022): 5047. http://dx.doi.org/10.3390/en15145047.
Pełny tekst źródłaCai, Feng, Jingwen Yin i Juqiang Feng. "Effect of Methane Adsorption on Mechanical Performance of Coal". Applied Sciences 12, nr 13 (29.06.2022): 6597. http://dx.doi.org/10.3390/app12136597.
Pełny tekst źródłaLiu, Zhenjian, Zhenyu Zhang, Xiaoqian Liu, Tengfei Wu i Xidong Du. "Supercritical CO2 Exposure-Induced Surface Property, Pore Structure, and Adsorption Capacity Alterations in Various Rank Coals". Energies 12, nr 17 (27.08.2019): 3294. http://dx.doi.org/10.3390/en12173294.
Pełny tekst źródłaEkundayo, Jamiu M., i Reza Rezaee. "Numerical Simulation of Gas Production from Gas Shale Reservoirs—Influence of Gas Sorption Hysteresis". Energies 12, nr 18 (4.09.2019): 3405. http://dx.doi.org/10.3390/en12183405.
Pełny tekst źródłaTang, Songlei, Hongbo Zhai, Hong Tang i Feng Yang. "Isothermal Desorption Hysteretic Model for Deep Coalbed Methane Development". Geofluids 2022 (25.01.2022): 1–9. http://dx.doi.org/10.1155/2022/5259115.
Pełny tekst źródłaNi, X. M., Q. F. Jia i Y. B. Wang. "Characterization of Permeability Changes in Coal of High Rank during the CH4-CO2 Replacement Process". Geofluids 2018 (12.11.2018): 1–8. http://dx.doi.org/10.1155/2018/8321974.
Pełny tekst źródłaZhou, Juan, Shiwang Gao, Lianbo Liu, Tieya Jing, Qian Mao, Mingyu Zhu, Wentao Zhao, Bingxiao Du, Xu Zhang i Yuling Shen. "Investigating the Influence of Pore Shape on Shale Gas Recovery with CO2 Injection Using Molecular Simulation". Energies 16, nr 3 (3.02.2023): 1529. http://dx.doi.org/10.3390/en16031529.
Pełny tekst źródłaDe Wireld, Guy, Youssef Belmabkhout i Marc Frère. "Buoyancy effect correction on high pressure pure gas adsorption gravimetric measurements". Annales de Chimie Science des Matériaux 30, nr 4 (28.08.2005): 411–23. http://dx.doi.org/10.3166/acsm.30.411-423.
Pełny tekst źródłaChilev, Ch, F. Darkrim Lamari, E. Kirilova i I. Pentchev. "Comparison of gas excess adsorption models and high pressure experimental validation". Chemical Engineering Research and Design 90, nr 11 (listopad 2012): 2002–12. http://dx.doi.org/10.1016/j.cherd.2012.03.012.
Pełny tekst źródłaRouquerol, Jean, Françoise Rouquerol, Phillip Llewellyn i Renaud Denoyel. "Surface excess amounts in high-pressure gas adsorption: Issues and benefits". Colloids and Surfaces A: Physicochemical and Engineering Aspects 496 (maj 2016): 3–12. http://dx.doi.org/10.1016/j.colsurfa.2015.10.045.
Pełny tekst źródłaRaza, Syed Shabbar, Julie Pearce, Pradeep Shukla, Phil Hayes i Victor Rudolph. "Characterisation of Surat Basin Walloon interburden and overlying Springbok Sandstone: a focus on methane adsorption isotherms, permeability and gas content". APPEA Journal 60, nr 2 (2020): 748. http://dx.doi.org/10.1071/aj19078.
Pełny tekst źródłaGao, Jian Liang, i Yu Wang. "Research on the Relationship between the Drilling Cutting Gas Desorption Index △h2 and Parameters of Gas Occurrence". Applied Mechanics and Materials 99-100 (wrzesień 2011): 1312–18. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.1312.
Pełny tekst źródłaLi, De-Yang, Dong-Mei Liu, Hong-Kui Hu, Hui-Feng Bo i Zhan-Xin Zhang. "Molecular Simulation of Adsorption and Diffusion of Methane and Ethane in Kaolinite Clay under Supercritical Conditions: Effects of Water and Temperature". Minerals 13, nr 10 (28.09.2023): 1269. http://dx.doi.org/10.3390/min13101269.
Pełny tekst źródłaDamasceno Borges, Daiane, i Douglas S. Galvao. "Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study". MRS Advances 3, nr 1-2 (2018): 115–20. http://dx.doi.org/10.1557/adv.2018.190.
Pełny tekst źródłaAbou Alfa, Khaled, Diana C. Meza-Sepulveda, Cyril Vaulot, Jean-Marc Le Meins, Camelia Matei Ghimbeu, Louise Tonini, Janneth A. Cubillos i in. "Cocoa Pod Husk Carbon Family for Biogas Upgrading: Preliminary Assessment Using the Approximate Adsorption Performance Indicator". C 10, nr 4 (29.11.2024): 100. http://dx.doi.org/10.3390/c10040100.
Pełny tekst źródłaTan, Xiaohua, Xinjian Ma, Xiaoping Li i Yilong Li. "An Adsorption Model Considering Fictitious Stress". Fractal and Fractional 9, nr 1 (30.12.2024): 17. https://doi.org/10.3390/fractalfract9010017.
Pełny tekst źródłaJia, Tianrang, Cao Liu, Guoying Wei, Jiangwei Yan, Qinghao Zhang, Lifei Niu, Xiaolei Liu, Mingjie Zhang, Yiwen Ju i Yongjun Zhang. "Micro-Nanostructure of Coal and Adsorption-Diffusion Characteristics of Methane". Journal of Nanoscience and Nanotechnology 21, nr 1 (1.01.2021): 422–30. http://dx.doi.org/10.1166/jnn.2021.18733.
Pełny tekst źródłaZhang, Guofang, Taoping Chen, Fuping Wang, Boyu Sun, Yong Wang i Dali Hou. "Experimental determination of deviation factor of natural gas in natural gas reservoir with high CO2 content". E3S Web of Conferences 245 (2021): 01045. http://dx.doi.org/10.1051/e3sconf/202124501045.
Pełny tekst źródłaÖztan, Hazal, i Duygu Uysal. "Determination of adsorption capacities of N2 and CO2 on commercial activated carbon and adsorption isotherm models". E3S Web of Conferences 433 (2023): 01004. http://dx.doi.org/10.1051/e3sconf/202343301004.
Pełny tekst źródłaAo, Xiang, Baobao Wang, Yuxi Rao, Lang Zhang, Yu Wang i Hongkun Tang. "Effect of CO2 Corrosion and Adsorption-Induced Strain on Permeability of Oil Shale: Numerical Simulation". Energies 16, nr 2 (9.01.2023): 780. http://dx.doi.org/10.3390/en16020780.
Pełny tekst źródła