Gotowa bibliografia na temat „HLA knockout”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HLA knockout”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HLA knockout"
McCarty, Todd M., Zhiwei Yu, Xiping Liu, Don J. Diamond i Joshua D. I. Ellenhorn. "An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice". Annals of Surgical Oncology 5, nr 1 (styczeń 1998): 93–99. http://dx.doi.org/10.1007/bf02303770.
Pełny tekst źródłaSuzuki, Daisuke, Naoshi Sugimoto, Norihide Yoshikawa, Hiroshi Endo, Sou Nakamura, Akitsu Hotta i Koji Eto. "Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal Perfect Rejection Profiles for Allotransfusion". Blood 128, nr 22 (2.12.2016): 3841. http://dx.doi.org/10.1182/blood.v128.22.3841.3841.
Pełny tekst źródłaKwon, Yoo-Wook, Hyo-Suk Ahn, Jin-Woo Lee, Han-Mo Yang, Hyun-Jai Cho, Seok Joong Kim, Shin-Hyae Lee i in. "HLA DR Genome Editing with TALENs in Human iPSCs Produced Immune-Tolerant Dendritic Cells". Stem Cells International 2021 (20.05.2021): 1–14. http://dx.doi.org/10.1155/2021/8873383.
Pełny tekst źródłaZha, Shijun, Johan Chin-Kang Tay, Sumin Zhu, Zhendong Li, Zhicheng Du i Shu Wang. "Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells". Cell Transplantation 29 (1.01.2020): 096368972096552. http://dx.doi.org/10.1177/0963689720965529.
Pełny tekst źródłaKarkischenko, V. N., A. G. Berzina, I. A. Pomytkin, E. S. Glotova, M. A. Savina, D. V. Petrov, L. A. Taboyakova, L. А. Bolotskih i I. A. Vasil’eva. "Immune Response in HLA-A*02:01 Transgenic Humanized Mice to the Introduction of Horse IgG Antigen". Journal Biomed 20, nr 2 (23.07.2024): 45–52. http://dx.doi.org/10.33647/2074-5982-20-2-45-52.
Pełny tekst źródłaRivera González, Lorena, Yaritza Inostroza-Nieves, Alexandra Lozano, Pablo J. López, Jamie Rosado Alicea, Gregory N. Prado, Jose R. Romero i Alicia Rivera. "Endothelin-1 Regulates Molecules of the Major Histocompatibility Complex: Role in Sickle Cell Disease". Blood 128, nr 22 (2.12.2016): 3638. http://dx.doi.org/10.1182/blood.v128.22.3638.3638.
Pełny tekst źródłaVeldman, Johanna, Lydia Visser, Magdalena Huberts-Kregel, Natasja Muller, Bouke Hepkema, Anke van den Berg i Arjan Diepstra. "Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58". Blood 136, nr 21 (19.11.2020): 2437–41. http://dx.doi.org/10.1182/blood.2020005546.
Pełny tekst źródłaChen, Liye, Hui Shi, Jack Yuan i Paul Bowness. "Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression". Annals of the Rheumatic Diseases 76, nr 3 (11.08.2016): 593–601. http://dx.doi.org/10.1136/annrheumdis-2016-209512.
Pełny tekst źródłaTorikai, Hiroki, Andreas Reik, Carrie Yuen, Yuanyue Zhou, Denise Kellar, Helen Huls, Edus H. Warren i in. "HLA and TCR Knockout by Zinc Finger Nucleases: Toward “off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies." Blood 116, nr 21 (19.11.2010): 3766. http://dx.doi.org/10.1182/blood.v116.21.3766.3766.
Pełny tekst źródłaLegut, Mateusz, Garry Dolton, Afsar Ali Mian, Oliver G. Ottmann i Andrew K. Sewell. "CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells". Blood 131, nr 3 (18.01.2018): 311–22. http://dx.doi.org/10.1182/blood-2017-05-787598.
Pełny tekst źródłaRozprawy doktorskie na temat "HLA knockout"
Wang, Valentine. "Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection". Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Pełny tekst źródłaCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease
Książki na temat "HLA knockout"
Pham, Minh-Ha T. Why We Can't Have Nice Things. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478023210.
Pełny tekst źródłaJara Orellana,, Claudia. Efectos de la proteína Tau sobre la disfunción mitocondrial y el deterioro cognitivo en el envejecimiento. Universidad Autónoma de Chile, 2018. http://dx.doi.org/10.32457/20.500.12728/87452018dcbm6.
Pełny tekst źródłaCzęści książek na temat "HLA knockout"
Bly, Mary. "Bawdy Virgins and Queer Puns". W Queer Virgins and Virgin Queans on the Early Modern Stage, 1–27. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198186991.003.0001.
Pełny tekst źródłaStreszczenia konferencji na temat "HLA knockout"
Neklesova, M. V., S. A. Silonov, E. Y. Smirnov, R. R. Sharipov, A. M. Surin, I. M. Kuznetsova, K. K. Turoverov i A. V. Fonin. "THE ROLE OF PROMYELOCYTIC LEUKEMIA PROTEIN IN MAMMALIAN INTRACELLULAR CALCIUM TRANSPORT". W XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-262.
Pełny tekst źródła