Gotowa bibliografia na temat „Host-Pathogen-Environment interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Host-Pathogen-Environment interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Host-Pathogen-Environment interaction"
Martinez-Martin, Nadia. "Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions". Journal of Immunology Research 2017 (2017): 1–18. http://dx.doi.org/10.1155/2017/2197615.
Pełny tekst źródłaChen, Melissa Y., Leah M. Fulton, Ivie Huang, Aileen Liman, Sarzana S. Hossain, Corri D. Hamilton, Siyu Song, Quentin Geissmann, Kayla C. King i Cara H. Haney. "Order among chaos: High throughput MYCroplanters can distinguish interacting drivers of host infection in a highly stochastic system". PLOS Pathogens 21, nr 2 (11.02.2025): e1012894. https://doi.org/10.1371/journal.ppat.1012894.
Pełny tekst źródłaBurdon, J. J., i P. H. Thrall. "Resistance variation in natural plant populations". Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (1.01.2002): S145—S150. http://dx.doi.org/10.17221/10342-pps.
Pełny tekst źródłaWroth, J. M. "Variation in pathogenicity among and within Mycosphaerella pinodes populations collected from field pea in Australia". Canadian Journal of Botany 76, nr 11 (1.11.1998): 1955–66. http://dx.doi.org/10.1139/b98-164.
Pełny tekst źródłaBlaustein, Andrew R., Stephanie S. Gervasi, Pieter T. J. Johnson, Jason T. Hoverman, Lisa K. Belden, Paul W. Bradley i Gisselle Y. Xie. "Ecophysiology meets conservation: understanding the role of disease in amphibian population declines". Philosophical Transactions of the Royal Society B: Biological Sciences 367, nr 1596 (19.06.2012): 1688–707. http://dx.doi.org/10.1098/rstb.2012.0011.
Pełny tekst źródłaHaley, Kathryn P., i Jennifer A. Gaddy. "Helicobacter pylori: Genomic Insight into the Host-Pathogen Interaction". International Journal of Genomics 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/386905.
Pełny tekst źródłaGaylord, Elizabeth A., Hau Lam Choy i Tamara L. Doering. "Dangerous Liaisons: Interactions of Cryptococcus neoformans with Host Phagocytes". Pathogens 9, nr 11 (27.10.2020): 891. http://dx.doi.org/10.3390/pathogens9110891.
Pełny tekst źródłaTung, Pham X., Eufemio T. Rasco, Peter Vander Zaag i Peter Schmiediche. "Resistance to Pseudomonas solanacearum in the potato: II. Aspects of host-pathogen-environment interaction". Euphytica 45, nr 3 (luty 1990): 211–15. http://dx.doi.org/10.1007/bf00032988.
Pełny tekst źródłaTamir-Ariel, Dafna, Naama Navon i Saul Burdman. "Identification of Genes in Xanthomonas campestris pv. vesicatoria Induced during Its Interaction with Tomato". Journal of Bacteriology 189, nr 17 (15.06.2007): 6359–71. http://dx.doi.org/10.1128/jb.00320-07.
Pełny tekst źródłaMehta, Sahil, Amrita Chakraborty, Amit Roy, Indrakant K. Singh i Archana Singh. "Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant–Pathogen Interaction". Plants 10, nr 6 (30.05.2021): 1098. http://dx.doi.org/10.3390/plants10061098.
Pełny tekst źródłaRozprawy doktorskie na temat "Host-Pathogen-Environment interaction"
Duperret, Léo. "Caractérisation des mécanismes moléculaires de la permissivité au Syndrome de Mortalité de l'Huître du Pacifique (POMS) sous influence de la température et du régime alimentaire". Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0042.
Pełny tekst źródłaOver the past decades, food production systems have had to meet the growing demand for food driven by the exponential increase in the global human population. This demand has led to intensified agriculture, livestock farming, and fishing practices, often at the expense of natural resources and planetary health. In the marine environment, intensified fishing has resulted in the depletion of certain stocks and the implementation of fishing quotas. The decline in marine resources has prompted the development of aquaculture, a practice for farming blue resources. However, with overproduction and global environmental changes, we have witnessed an upsurge in epizootics since 1970, particularly among ectothermic organisms. The Pacific Oyster Mortality Syndrome (POMS) is a prime example, responsible for significant annual mortality episodes in juvenile oysters of the species Magallana gigas across major producing countries. Emerging in 2008 in France, this polymicrobial disease is influenced by several factors, including temperature (between 16°C and 24°C along the French coasts) and the availability of nutritional resources. Although extensive research has helped characterize its pathogenesis and identify the various factors influencing the development of the disease, the molecular mechanisms underlying variations in permissiveness according to these factors remain largely unknown. This thesis addresses this objective. Through a rigorous experimental design, a holistic approach, and an integrative comparative analysis at multiple scales under permissive and non-permissive conditions for the disease, we identified the molecular mechanisms underlying permissiveness related to temperature and nutritional resources. These findings enhance our understanding of the complexity of host-pathogen-environment interactions and will ultimately contribute to the development of predictive models for epidemiological risk
Schmertmann, Laura. "The Cryptococcus gattii species complex in koalas: host-pathogen-environment interactions and molecular epidemiology". Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20769.
Pełny tekst źródłaHÖNIG, Václav. "Spatial Distribution of Tick-Borne Pathogens as a Consequence of Vector-Host-Pathogen Interactions with Environment". Doctoral thesis, 2015. http://www.nusl.cz/ntk/nusl-201343.
Pełny tekst źródłaKsiążki na temat "Host-Pathogen-Environment interaction"
Roche, Benjamin, Hélène Broutin i Frédéric Simard, red. Ecology and Evolution of Infectious Diseases. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789833.001.0001.
Pełny tekst źródłaCzęści książek na temat "Host-Pathogen-Environment interaction"
Prabhu, Ashish A., i V. Venkatadasu. "Systems and Synthetic Biology Approach to Understand the Importance of Host-Pathogen Interaction". W Microbial Interventions in Agriculture and Environment, 433–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9084-6_19.
Pełny tekst źródłaUlrich, Danielle E. M., Steve Voelker, J. Renée Brooks i Frederick C. Meinzer. "Insect and Pathogen Influences on Tree-Ring Stable Isotopes". W Stable Isotopes in Tree Rings, 711–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92698-4_25.
Pełny tekst źródłaPrusky, Dov, Shiri Barad, Neta Luria i Dana Ment. "pH Modulation of Host Environment, a Mechanism Modulating Fungal Attack in Postharvest Pathogen Interactions". W Post-harvest Pathology, 11–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07701-7_2.
Pełny tekst źródłaAly, Sharif S., i Sarah M. Depenbrock. "Preventing bacterial diseases in dairy cattle". W Improving dairy herd health Improving, 395–456. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2020.0086.16.
Pełny tekst źródłaBateman, Kelly S., Stephen W. Feist, John P. Bignell, David Bass i Grant D. Stentiford. "Marine pathogen diversity and disease outcomes". W Marine Disease Ecology, 3–44. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198821632.003.0001.
Pełny tekst źródłaMarquis, Jean-Francois, John R. Forbes, Francois Canonne-Hergaux, Cynthia Horth i Philippe Gros. "Metal Transport Genes". W Genetic Susceptibility to Infectious Diseases, 175–89. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195174908.003.0013.
Pełny tekst źródłaSingh, Joginder, Joydeep Dutta i Ravi Kant Pathak. "Antibacterial Peptides: Potential Therapeutic Agent". W Recent Trends and The Future of Antimicrobial Agents - Part I, 61–92. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815079609123010006.
Pełny tekst źródłaAfifi, Mohammed A., Mohammed W. Al-Rabia i Deema I. Fallatah. "Animal Modeling of Infectious Diseases". W Animal Models In Experimental Medicine, 20–54. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815196382124010005.
Pełny tekst źródłaOwen, Jennifer C., James S. Adelman i Amberleigh E. Henschen. "The Nature of Host–Pathogen Interactions". W Infectious Disease Ecology of Wild Birds, 7–28. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198746249.003.0002.
Pełny tekst źródłaF. Ramos, Rodrigo, Lisiane Sobucki, Estéfany Pawlowski, Janaina S. Sarzi, Jessica E. Rabuske, Lucas G. Savian, Tiago E. Kaspary i Cristiano Bellé. "Perspective Chapter: Microorganisms and Their Relationship with Tree Health". W Current and Emerging Challenges in the Diseases of Trees [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110461.
Pełny tekst źródłaRaporty organizacyjne na temat "Host-Pathogen-Environment interaction"
Horwitz, Benjamin A., i Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, marzec 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Pełny tekst źródłaEldar, Avigdor, i Donald L. Evans. Streptococcus iniae Infections in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Toward the Pathogen and Vaccine Formulation. United States Department of Agriculture, grudzień 2000. http://dx.doi.org/10.32747/2000.7575286.bard.
Pełny tekst źródłaSionov, Edward, Nancy Keller i Shiri Barad-Kotler. Mechanisms governing the global regulation of mycotoxin production and pathogenicity by Penicillium expansum in postharvest fruits. United States Department of Agriculture, styczeń 2017. http://dx.doi.org/10.32747/2017.7604292.bard.
Pełny tekst źródłaShpigel, Nahum Y., Ynte Schukken i Ilan Rosenshine. Identification of genes involved in virulence of Escherichia coli mastitis by signature tagged mutagenesis. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699853.bard.
Pełny tekst źródłaDickman, Martin B., i Oded Yarden. Modulation of the Redox Climate and Phosphatase Signaling in a Necrotroph: an Axis for Inter- and Intra-cellular Communication that Regulates Development and Pathogenicity. United States Department of Agriculture, sierpień 2011. http://dx.doi.org/10.32747/2011.7697112.bard.
Pełny tekst źródłaHarms, Nathan, Judy Shearer, James Cronin i John Gaskin. Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Engineer Research and Development Center (U.S.), sierpień 2021. http://dx.doi.org/10.21079/11681/41662.
Pełny tekst źródłaPrusky, Dov, i Jeffrey Rollins. Modulation of pathogenicity of postharvest pathogens by environmental pH. United States Department of Agriculture, grudzień 2006. http://dx.doi.org/10.32747/2006.7587237.bard.
Pełny tekst źródła