Gotowa bibliografia na temat „Hot metal forming”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hot metal forming”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hot metal forming"
Liu, Cai-yi, Yan Peng, Ling Kong, Lu-han Hao i Ren Zhai. "Hot forming with a nonuniform temperature field using die partition cooling". Metallurgical Research & Technology 116, nr 6 (2019): 613. http://dx.doi.org/10.1051/metal/2019044.
Pełny tekst źródłaBeynon, J. H. "Tribology of hot metal forming". Tribology International 31, nr 1-3 (styczeń 1998): 73–77. http://dx.doi.org/10.1016/s0301-679x(98)00009-7.
Pełny tekst źródłaMa, Ning, Ping Hu i Zong Hua Zhang. "Research on a New Type of Metal Composite Material in Hot Forming and its Application". Advanced Materials Research 156-157 (październik 2010): 582–91. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.582.
Pełny tekst źródłaBambach, Markus, Irina Sizova i Aliakbar Emdadi. "Towards Damage Controlled Hot Forming". Applied Mechanics and Materials 885 (listopad 2018): 56–63. http://dx.doi.org/10.4028/www.scientific.net/amm.885.56.
Pełny tekst źródłaGeindreau, Christian, Didier Bouvard i Pierre Doremus. "Constitutive behaviour of metal powder during hot forming." European Journal of Mechanics - A/Solids 18, nr 4 (lipiec 1999): 597–615. http://dx.doi.org/10.1016/s0997-7538(99)00101-1.
Pełny tekst źródłaYu, Hai Yan, Li Bao, You Zhi Deng i Wei Cao. "Forming Response of Ultra High Strength Steel Sheet to Stamping Speed during Hot Forming". Advanced Materials Research 160-162 (listopad 2010): 123–29. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.123.
Pełny tekst źródłaXu, Yong, Xiu-Wen Lv, Yun Wang, Shi-Hong Zhang, Wen-Long Xie, Liang-Liang Xia i Shuai-Feng Chen. "Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube". Materials 16, nr 3 (29.01.2023): 1152. http://dx.doi.org/10.3390/ma16031152.
Pełny tekst źródłaRana, Radhakanta, Theo Kop, Peter Beentjes i Ellen van der Aa. "Low Temperature Hot Press Forming of a Zinc Coated Third Generation Advanced High Strength Steel". Materials Science Forum 1105 (29.11.2023): 225–30. http://dx.doi.org/10.4028/p-udks6s.
Pełny tekst źródłaSana, Guillaume, Alain Petiot i Arnaud Giraudet. "Hot Forming and Superplastic Forming: Presses Evolution and New Applications in the Aerospace Industry". Materials Science Forum 838-839 (styczeń 2016): 563–67. http://dx.doi.org/10.4028/www.scientific.net/msf.838-839.563.
Pełny tekst źródłaMüller, Roland, i André Mosel. "Characterisation of Tool Coatings for Press Hardening". Advanced Materials Research 966-967 (czerwiec 2014): 259–69. http://dx.doi.org/10.4028/www.scientific.net/amr.966-967.259.
Pełny tekst źródłaRozprawy doktorskie na temat "Hot metal forming"
Odenberger, Eva-Lis. "Concepts for hot sheet metal forming of titanium alloys /". Luleå : Department of Applied Physics and Mechanical Engineering, Division of Solid Mechanics, Luleå University of Technology, 2009. http://www.avhandlingar.se/avhandling/167c433b06/.
Pełny tekst źródłaTrull, Mikhail. "Modelling of oxide failure in hot metal forming operations". Thesis, University of Sheffield, 2003. http://etheses.whiterose.ac.uk/10262/.
Pełny tekst źródłaSchonauer, M. "Unified numerical analysis of cold and hot metal forming processes". Thesis, Swansea University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638778.
Pełny tekst źródłaMichieletto, Francesco. "Innovative forming processes of aluminium alloys sheets and tubes at elevated temperature". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424956.
Pełny tekst źródłaNegli ultimi decenni, la comunità internazionale è alla continua ricerca di provvedimenti per salvaguardare l’atmosfera e l’ambiente terrestre. In campo automobilistico e dei trasporti la produzione di biossido di carbonio dai gas di scarico delle autovetture, meglio conosciuto come CO2, è ritenuto tra i maggiori responsabili del rafforzamento dell’effetto serra e dunque dell’innalzamento del clima terrestre. Per porre un concreto rimedio e regolamentare l’efficienza sul consumo medio di un autoveicolo, con il protocollo di Kyoto stipulato nel 1997 ed entrato in vigore nel 2005, la comunità internazionale si è impegnata legalmente alla produzioni di veicoli in grado di rispettare il limite di emissione di 95 g di CO2 per kilometro entro l’anno 2020. L’alleggerimento complessivo di un automobile è sicuramente tra le soluzioni più immediate per la riduzione delle particelle inquinanti, in quanto veicoli più leggeri richiedono minore forza motrice e di conseguenza minore consumo di energia. Per questo motivo le compagnie automobilistiche negli ultimi anni sono alla ricerca di materiali innovativi per sostituire l’acciaio che comunemente è impiegato per la realizzazione di telai e parti di carrozzeria, senza pregiudicare la sicurezza dei passeggeri. Gli acciai alto resistenziali ma soprattutto le leghe leggere, hanno dimostrato essere delle ottime alternative grazie alle loro proprietà di bassa densità, resistenza alla corrosione, ed ottimo rapporto rigidezza-peso. Con l’utilizzo di parti stampate ma anche di elementi tubolari in lega di alluminio il peso medio della sola scocca di una vettura può essere ridotto del 15 – 20 %, portando ad un conseguente ridimensionamento di tutte gli organi connessi ed ad una sostanziale riduzione delle emissioni dannose. La principale limitazione nella lavorazione delle leghe di alluminio è la loro scarsa attitudine a subire deformazione plastica a temperatura ambiente collegata oltretutto ad un elevato ritorno elastico. Per far fronte a questa problematica, numerosi processi innovativi utilizzanti alta temperatura sono stati o sono tuttora in fase di studio con l’obiettivo principale di incrementare la formabilità del materiale. I confermati processi di deformazione di lamiera di alluminio quali Superplastic Forming e Quick Plastic Forming, hanno dimostrato sicuramente un vantaggio in termini di formabilità riuscendo oltretutto a generare parti complesse, ma sono d’altro canto estremamente costosi e soggetti a tempi molto lunghi di processo, per cui non applicabili per produzioni in larga scala. L’idroformatura a freddo e a tiepido, invece, che rappresenta l’attuale tecnologia all’avanguardia per la sagomatura di parti cave, oltre a necessitare di elevati costi iniziali connessi alle elevate pressioni del fluido necessarie per la deformazione e alle presse ad alto tonnellaggio richieste per la chiusura degli stampi durante l’iniezione del liquido stesso, presenta severi limiti nella temperatura massima di processo. Infatti le emulsioni acqua olio generalmente impiegate come mezzo deformante risultano infiammabili al di sopra del campo tiepido per l’alluminio, limitando dunque il range termico utilizzabile per il processo e di conseguenza la formabilità del materiale. In questo lavoro di ricerca sono stati studiati processi innovativi per la produzione di componenti di alluminio in lamiera e tubolari che superassero i limiti di processo delle attuali tecnologie produttive. In particolare la tecnologia dello stampaggio a caldo (Hot Stamping), oggigiorno applicata agli acciai alto resistenziali, è stata applicata con successo su lamiere di alluminio serie 5xxx e 6xxx, e validata con test industriali eseguiti su una vera linea di stampaggio producendo un componente automobilistico. Inoltre è stato realizzato e sviluppato un prototipo in grado di operare con la tecnologia innovativa del Hot Metal Gas Forming, che utilizza gas in pressione invece di fluidi per deformare componenti tubolari al alta temperatura. Prove di formabilità su tubi di alluminio serie 6xxx, ma anche la realizzazione di componenti in stampo, hanno permesso inoltre lo studio di numerosi aspetti critici per il processo. In fine, la sagomatura di un componente industriale in collaborazione con una azienda, curando oltretutto la qualità estetica del formato, ha permesso di verificare l’applicabilità e l’efficacia di questo processo anche a livello industriale.
Billur, Eren. "Fundamentals and Applications of Hot Stamping Technology for Producing Crash-Relevant Automotive Parts". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366243664.
Pełny tekst źródłaAbachi, Siamak. "Wear Analysis Of Hot Forging Dies". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605706/index.pdf.
Pełny tekst źródłaK Co-Supervisor: Prof. Dr. Mustafa lhan GÖ
KLER December 2004, 94 pages The service lives of dies in forging processes are to a large extent limited by wear, fatigue fracture and plastic deformation, etc. In hot forging processes, wear is the predominant factor in the operating lives of dies. In this study, the wear analysis of a closed die at the final stage of a hot forging process has been realized. The preform geometry of the part to be forged was measured by Coordinate Measuring Machine (CMM), and the CAD model of the die and the worn die were provided by the particular forging company. The hot forging operation was carried out at a workpiece temperature of 1100°
C and die temperature of 300°
C for a batch of 678 on a 1600-ton mechanical press. The die and the workpiece materials were AISI L6 tool steel and DIN 1.4021, respectively. The simulation of forging process for the die and the workpiece was carried out by Finite Volume Method using MSC.SuperForge. The flow of the material in the die, die filling, contact pressure distribution, sliding velocities and temperature distribution of the die have been investigated. In a single stroke, the depth of wear was evaluated using Archard&rsquo
s wear equation with a constant wear coefficient of 1¥
10-12 Pa-1 as an initial value. The depth of wear on the die surface in every step has been evaluated using the Finite Volume simulation results and then the total depth of wear was determined. To be able to compare the wear analysis results with the experimental worn die, the surface measurement of the worn die has been done on CMM. By comparing the numerical results of the die wear analysis with the worn die measurement, the dimensional wear coefficient has been evaluated for different points of the die surface and finally a value of dimensional wear coefficient is suggested. As a result, the wear coefficient was evaluated as 6.5¥
10-13 Pa-1 and considered as a good approximation to obtain the wear depth and the die life in hot forging processes under similar conditions.
Haliscelik, Murat. "Elastic-plastic Finite Element Analysis Of Semi-hot Forging Dies". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610542/index.pdf.
Pełny tekst źródłaPallikonda, Mahesh Kumar Pallikonda. "FORMING A METAL MATRIX NANOCOMPOSITE (MMNC) WITH FULLY DISPERSED AND DEAGGLOMERATED MULTIWALLED CARBON NANOTUBES (MWCNTs)". Cleveland State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=csu1503937490966191.
Pełny tekst źródłaTuretta, Alberto. "Investigation on thermal, mechanical and microstructural properties of quenchenable high strenght steels in hot stamping operations". Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425096.
Pełny tekst źródłaSoranansri, Panuwat. "Tribological behavior in hot forming of aluminum alloy : tribological performance of commercial PVD coatings and mechanisms of aluminum transfer". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2025. https://ged.uphf.fr/nuxeo/site/esupversions/59dae705-f61e-4502-b722-6abf28311853.
Pełny tekst źródłaThe aims of this PhD thesis were to find effective surface coatings to prevent the material transfer issue and to study the mechanisms of material transfer in the hot forming of aluminum alloy. The workpiece material was AA 6082-T6 aluminum alloy, which is widely used to produce automotive components.The warm and hot upsetting sliding test (WHUST) was selected as the main tribometer in this study. To control the testing temperatures precisely, a scaled-down apparatus of the WHUST was designed to integrate into the heating chamber of the Bruker UMT TriboLab platform. The preliminary experiments of the new apparatus found that the pile-up material significantly occurred in front of the contactor due to the high friction at the interface and the deformation characteristic of the aluminum alloy at high temperatures. From this point, the pile-up material was considered as a new parameter in analytical equations used to identify the Coulomb coefficient of friction (COF) and the shear friction factor.The new apparatus of the WHUST was then used to evaluate the tribological performance of three commercial PVD coatings: AlCrN, TiAlN, and Arc-DLC. The experiments were performed at temperatures between 300˚C and 500˚C, at 0.5 mm/s of sliding speed under non-lubrication contact conditions. Those conditions led to the mean contact pressure between 40 MPa and 100 MPa. The results showed that the Arc-DLC coating had better efficiency in alleviating the aluminum transfer issue than the AlCrN and TiAlN coatings. The Arc-DLC coating caused less adhesive to the aluminum alloy and less transferred aluminum, especially in the initial period. Moreover, these findings were consolidated under higher contact pressure by using the hot V-groove compression test (HVGCT).Following that, the Arc-DLC coating was selected to study the mechanisms of aluminum transfer on the forming tool in detail. The WHUST was performed with the specific short sliding distance (2 mm) to investigate the initial stage of aluminum transfer, while the full sliding distance (38 mm) was used to examine the evolution of aluminum transfer. The experiments were conducted at the same testing temperatures with two different sliding speeds, 0.5 mm/s and 5.0 mm/s, under non-lubrication contact conditions. It was found that the aluminum transfer in the initial stage was mainly caused by mechanical plowing. Then, during the grow-up stage, the aluminum transfer was dominated by mechanical plowing and/or adhesive bonding, depending on the testing temperatures and the sliding velocities. Additionally, the different transfer mechanisms caused dissimilar COFs, surface characteristics along the friction track of the specimen, as well as transferred aluminum.In the last part of this PhD thesis, Machine Learning (ML) was involved to study the mechanisms of aluminum transfer. The previous part found that the wear characteristics along the friction track could be a significant indicator to differentiate the transfer mechanisms. Thus, the surface topographies and the SEM images along the friction track were used to classify by five simple ML algorithms and a custom Convolutional Neural Network (CNN) architecture, respectively. It was proved that the ML with topographic data and the CNN with SEM image data had the potential to identify the wear mode accurately
Książki na temat "Hot metal forming"
Hu, Ping, Ning Ma, Li-zhong Liu i Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4099-3.
Pełny tekst źródłaZhu, Jie. Study on microstructural evolution of stainless steel 316 and 304 during hot metal forming processes. Birmingham: University of Birmingham, 2002.
Znajdź pełny tekst źródłaHu, Ping. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. London: Springer London, 2013.
Znajdź pełny tekst źródłaFedorenko, Mihail, Yuliya Bondarenko, Tamara Sanina, Tat'yana Duyun i Vladimir Duganov. Shaping processes and tools. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/1214787.
Pełny tekst źródłaCHS2 Proceedings - Hot Sheet Metal Forming of High-Performance Steel. Association for Iron & Steel Technology, 2024.
Znajdź pełny tekst źródłaCHS2 2024 Proceedings - Hot Sheet Metal Forming of High-Performance Steel (digital). Association for Iron & Steel Technology, 2024.
Znajdź pełny tekst źródłaMa, Ning, Ping Hu, Li-zhong Liu i Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer London, Limited, 2012.
Znajdź pełny tekst źródłaMa, Ning, Ping Hu, Li-zhong Liu i Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer, 2014.
Znajdź pełny tekst źródłaCampbell, F. C., red. Metals Fabrication. ASM International, 2013. http://dx.doi.org/10.31399/asm.tb.mfub.9781627083089.
Pełny tekst źródłaFuertes, Jairo N., red. Working Alliance Skills for Mental Health Professionals. Oxford University Press, 2019. http://dx.doi.org/10.1093/med-psych/9780190868529.001.0001.
Pełny tekst źródłaCzęści książek na temat "Hot metal forming"
Bertrand-Corsini, C., C. David, A. Bern, P. Montmitonnet, J. L. Chenot, P. Buessler i F. Fau. "A Three Dimensional Thermomechanical Analysis of Steady Flows in Hot Forming Processes. Application to Hot Flat Rolling and Hot Shape Rolling". W Modelling of Metal Forming Processes, 271–79. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1411-7_30.
Pełny tekst źródłaHayashi, Kanji, Hideyuki Nikaido i Hideaki Furumoto. "Endless Hot Strip Rolling". W 60 Excellent Inventions in Metal Forming, 233–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_36.
Pełny tekst źródłaSingh, Amarjeet Kumar, i K. Narasimhan. "Artificial Neural Network (ANN) Based Formability Prediction Model for 22MnB5 Steel under Hot Stamping Conditions". W Metal Forming Processes, 1–9. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003226703-1.
Pełny tekst źródłaPietrzyk, M., i J. G. Lenard. "Thermal-Mechanical Modelling for Hot Rolling: Experimental Substantiation". W Modelling of Metal Forming Processes, 281–88. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1411-7_31.
Pełny tekst źródłaBeynon, J. H., A. R. S. Ponter i C. M. Sellars. "Metallographic Verification of Computer Modelling of Hot Rolling". W Modelling of Metal Forming Processes, 321–28. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1411-7_36.
Pełny tekst źródłaHrycaj, P., D. Lochegnies, J. Oudin, J. C. Gelin i Y. Ravalard. "Finite Element Analysis of Two-Roll Hot Piercing". W Modelling of Metal Forming Processes, 329–36. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1411-7_37.
Pełny tekst źródłaCescutti, J. P., E. Wey i J. L. Chenot. "Finite Element Calculation of Hot Forging with Continuous Remeshing". W Modelling of Metal Forming Processes, 207–16. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1411-7_23.
Pełny tekst źródłaOmori, Shunji, Hiroyuki Hino, Kanji Hayashi i Hideaki Furumoto. "Pair Cross Type Rolling Mill for Hot Rolling". W 60 Excellent Inventions in Metal Forming, 225–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_35.
Pełny tekst źródłaIkeda, Nobuhiro. "Non-graphite Water Soluble Lubricant for Hot Forging". W 60 Excellent Inventions in Metal Forming, 267–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_41.
Pełny tekst źródłaHuskic, Adis, Mohammad Kazhai i Bernd-Arno Behrens. "Process-Integrated Heat Treatment of Hot Forged Components". W 60 Excellent Inventions in Metal Forming, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_65.
Pełny tekst źródłaStreszczenia konferencji na temat "Hot metal forming"
Charles, J., D. Jobard, F. Dupoiron i D. Catelin. "Clad Plates an Economical Solution for Severe Corrosive Environments". W CORROSION 1988, 1–16. NACE International, 1988. https://doi.org/10.5006/c1988-88009.
Pełny tekst źródłaURSINUS, Jonathan, Martin BONHAGE, Christoph BÜDENBENDER, Florian NÜRNBERGER, Eugen DEMLER i BerndArno BEHRENS. "Hot Forming of Cast Steel Cylinders". W METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.820.
Pełny tekst źródłaMAENO, Tomoyoshi. "Hot local compression and die quench ausforming of quenchable steel sheet". W Metal Forming 2024, 32–40. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-4.
Pełny tekst źródłaZHANG, Ruiqiang. "Experimental formability evaluation for aluminium alloy sheets under hot stamping conditions". W Metal Forming 2024, 90–99. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-10.
Pełny tekst źródłaKADEN, Christoph. "Microstructure and hot deformation behavior of twin roll cast ZAX210 magnesium wire". W Metal Forming 2024, 2–10. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-1.
Pełny tekst źródłaLI, Shuo. "Eccentricity-resistant process design and finite element analysis of deep hole cylindrical parts". W Metal Forming 2024, 589–96. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-63.
Pełny tekst źródłaCAI, Zhongman. "Development of unified constitutive model for hot deformation behavior of TC4 with and without diffusion bonding". W Metal Forming 2024, 548–57. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-59.
Pełny tekst źródłaCHANG, Shupeng. "Achievement of martensite strengthening in titanium alloy thin-walled components via non-equilibrium hot stamping". W Metal Forming 2024, 744–51. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-79.
Pełny tekst źródłaCHEN, Jiafeng. "Study of die punching process for hot stamped high strength steel and its performance evaluation". W Metal Forming 2024, 752–57. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-80.
Pełny tekst źródłaBUCCONI, Marco. "Environmental impact assessment and comparative analysis of hot stamping and cold stamping processes: A cradle-to-gate lifecycle assessment study". W Metal Forming 2024, 261–70. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903254-29.
Pełny tekst źródłaRaporty organizacyjne na temat "Hot metal forming"
Desbarats, A. J., i J. B. Percival. Hydrogeochemistry of mine tailings from a carbonatite-hosted Nb-REE deposit, Oka, Quebec, Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331256.
Pełny tekst źródła