Gotowa bibliografia na temat „Human Activity Prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Human Activity Prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Human Activity Prediction"
Dönmez, İlknur. "Human Activity Analysis and Prediction Using Google n-Grams". International Journal of Future Computer and Communication 7, nr 2 (czerwiec 2018): 32–36. http://dx.doi.org/10.18178/ijfcc.2018.7.2.516.
Pełny tekst źródłaYan, Aixia, Zhi Wang, Jiaxuan Li i Meng Meng. "Human Oral Bioavailability Prediction of Four Kinds of Drugs". International Journal of Computational Models and Algorithms in Medicine 3, nr 4 (październik 2012): 29–42. http://dx.doi.org/10.4018/ijcmam.2012100104.
Pełny tekst źródłaD., Manju, i Radha V. "A survey on human activity prediction techniques". International Journal of Advanced Technology and Engineering Exploration 5, nr 47 (21.10.2018): 400–406. http://dx.doi.org/10.19101/ijatee.2018.547006.
Pełny tekst źródłaKeshinro, Babatunde, Younho Seong i Sun Yi. "Deep Learning-based human activity recognition using RGB images in Human-robot collaboration". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 66, nr 1 (wrzesień 2022): 1548–53. http://dx.doi.org/10.1177/1071181322661186.
Pełny tekst źródłaBragança, Hendrio, Juan G. Colonna, Horácio A. B. F. Oliveira i Eduardo Souto. "How Validation Methodology Influences Human Activity Recognition Mobile Systems". Sensors 22, nr 6 (18.03.2022): 2360. http://dx.doi.org/10.3390/s22062360.
Pełny tekst źródłaGiri, Pranit. "Human Activity Recognition System". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 6671–73. http://dx.doi.org/10.22214/ijraset.2023.53135.
Pełny tekst źródłaBhambri, Pankaj, Sachin Bagga, Dhanuka Priya, Harnoor Singh i Harleen Kaur Dhiman. "Suspicious Human Activity Detection System". December 2020 2, nr 4 (31.10.2020): 216–21. http://dx.doi.org/10.36548/jismac.2020.4.005.
Pełny tekst źródłaXu-Nan Tan, Xu-Nan Tan. "Human Activity Recognition Based on CNN and LSTM". 電腦學刊 34, nr 3 (czerwiec 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Pełny tekst źródłaEsther, Ekemeyong, i Teresa Zielińska. "Predicting Human Activity – State of the Art". Pomiary Automatyka Robotyka 27, nr 2 (16.06.2023): 31–46. http://dx.doi.org/10.14313/par_248/31.
Pełny tekst źródłaLiu, Zhenguang, Kedi Lyu, Shuang Wu, Haipeng Chen, Yanbin Hao i Shouling Ji. "Aggregated Multi-GANs for Controlled 3D Human Motion Prediction". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 3 (18.05.2021): 2225–32. http://dx.doi.org/10.1609/aaai.v35i3.16321.
Pełny tekst źródłaRozprawy doktorskie na temat "Human Activity Prediction"
Coen, Paul Dixon. "Human Activity Recognition and Prediction using RGBD Data". OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2562.
Pełny tekst źródłaBergelin, Victor. "Human Activity Recognition and Behavioral Prediction using Wearable Sensors and Deep Learning". Thesis, Linköpings universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138064.
Pełny tekst źródłaBaldo, Fatima Magdi Hamza. "Integrating chemical, biological and phylogenetic spaces of African natural products to understand their therapeutic activity". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289714.
Pełny tekst źródłaSnyder, Kristian. "Utilizing Convolutional Neural Networks for Specialized Activity Recognition: Classifying Lower Back Pain Risk Prediction During Manual Lifting". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583999458096255.
Pełny tekst źródłaMehdi, Nima. "Approches probabilistes pour la perception et l’interprétation de l’activité humaine". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0202.
Pełny tekst źródłaFrom industry to services, intelligent systems are required to observe, interact with, or cooperate with humans. This thesis is therefore set in the context of intelligent perception methods for the analysis of humans, using the pose and activity associated with them. Due to the variable and changing nature of humans, it is difficult to obtain an accurate representation of theprocesses guiding their movements and actions. These difficulties are compounded when it comes to estimating or predicting movements or activities. In order to take account of the uncertainty inherent in humans, we propose a Bayesian approach to the perception and analysis of human activity. The first contribution is dedicated to the simultaneous estimation of human pose and posture. Using a monocular camera and wearable sensors, we aim to estimate human 3D pose in real time. For robust estimation, a multimodal fusion approach is suggested, incorporating measurements from wearable inertial sensors with camera observations. In this way, we overcome measurement ambiguities related to the camera and inertial drift due to inertial units. We use a particle filter so as to take into account the non-deterministic nature of human motion and thenon-Gaussian nature of posture. In order to reduce the computational cost, we put forward an architecture composed of two consecutive filters. A first filter estimates the posture in a factorized way from inertial observations only. Then a second filter estimates the complete pose from the camera, incorporating the estimation of the first filter. Our approach achieves fusion by constructing the sampling distribution of the second filter. This architecture makes it possible to estimate pose and posture simultaneously, at low computational cost, and is robust to cloaking and drift. The second contribution pertains to the prediction of human activity. Hidden Markov models have proved effective for the analysis of human activity through segmentation and activity recognition tasks. However, they have modeling limitations that make them insufficient for prediction. We therefore propose the use of semi-Markovian models for prediction. These models extend the definition of Markov models by explicitly modeling the duration spent in each state. This explicit modeling of duration enables better modeling of non-stationary processes and improves the predictive capability of these models. Our study thus demonstrates the usefulness of such models for activity prediction while taking uncertainty into account
Rozman, Peter Andrew. "Multi-Unit Activity in the Human Cortex as a Predictor of Seizure Onset". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:15821597.
Pełny tekst źródłaKarst, Gregory Mark. "Multijoint arm movements: Predictions and observations regarding initial muscle activity at the shoulder and elbow". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184920.
Pełny tekst źródłaCheradame, Stéphane. "Biomodulation du 5-fluorouracile par l'acide folinique et recherche des facteurs de prédiction de la sensibilité tumorale à cette association". Université Joseph Fourier (Grenoble ; 1971-2015), 1996. http://www.theses.fr/1996GRE10252.
Pełny tekst źródłaSilva, Joana. "Smartphone Based Human Activity Prediction". Dissertação, 2013. http://hdl.handle.net/10216/74272.
Pełny tekst źródłaSilva, Joana Raquel Cerqueira da. "Smartphone based human activity prediction". Master's thesis, 2013. http://hdl.handle.net/10216/72620.
Pełny tekst źródłaKsiążki na temat "Human Activity Prediction"
Fu, Yun, red. Human Activity Recognition and Prediction. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27004-3.
Pełny tekst źródłaFu, Yun. Human Activity Recognition and Prediction. Springer London, Limited, 2015.
Znajdź pełny tekst źródłaAndersson, Jenny. The Future as Social Technology. Prediction and the Rise of Futurology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814337.003.0005.
Pełny tekst źródłaCook, Diane J., i Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaCook, Diane J., i Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaCook, Diane J., i Narayanan C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley & Sons, Limited, John, 2015.
Znajdź pełny tekst źródłaActivity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, 2015.
Znajdź pełny tekst źródłaAndersson, Jenny. The Future of the World. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814337.001.0001.
Pełny tekst źródłaCzęści książek na temat "Human Activity Prediction"
Kong, Yu, i Yun Fu. "Activity Prediction". W Human Activity Recognition and Prediction, 107–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_6.
Pełny tekst źródłaLi, Kang, i Yun Fu. "Actionlets and Activity Prediction". W Human Activity Recognition and Prediction, 123–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_7.
Pełny tekst źródłaKong, Yu, i Yun Fu. "Action Recognition and Human Interaction". W Human Activity Recognition and Prediction, 23–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_2.
Pełny tekst źródłaKong, Yu, i Yun Fu. "Introduction". W Human Activity Recognition and Prediction, 1–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_1.
Pełny tekst źródłaJia, Chengcheng, i Yun Fu. "Subspace Learning for Action Recognition". W Human Activity Recognition and Prediction, 49–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_3.
Pełny tekst źródłaJia, Chengcheng, Wei Pang i Yun Fu. "Multimodal Action Recognition". W Human Activity Recognition and Prediction, 71–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_4.
Pełny tekst źródłaJia, Chengcheng, Yu Kong, Zhengming Ding i Yun Fu. "RGB-D Action Recognition". W Human Activity Recognition and Prediction, 87–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_5.
Pełny tekst źródłaLi, Kang, Sheng Li i Yun Fu. "Time Series Modeling for Activity Prediction". W Human Activity Recognition and Prediction, 153–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_8.
Pełny tekst źródłaFriedrich, Björn, i Andreas Hein. "Ensemble Classifier for Nurse Care Activity Prediction Based on Care Records". W Human Activity and Behavior Analysis, 323–32. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003371540-22.
Pełny tekst źródłaPiergiovanni, A. J., Anelia Angelova, Alexander Toshev i Michael S. Ryoo. "Adversarial Generative Grammars for Human Activity Prediction". W Computer Vision – ECCV 2020, 507–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_30.
Pełny tekst źródłaStreszczenia konferencji na temat "Human Activity Prediction"
Shete, Amar, Aashita Gupta, Ajay Waghumbare, Upasna Singh, Triveni Dhamale i Kiran Napte. "Human Activity Prediction Using Generative Adversarial Networks". W 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10726013.
Pełny tekst źródłaSukanya, K., Addagatla Prashanth i Ugendhar Addagatla. "Development of Human Activity Prediction Systems in Smart Homes". W 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icspcre62303.2024.10675115.
Pełny tekst źródłaNirmala, S., i R. A. Priya. "A Human Activity Determination Predicting Abnormality Using SVM Approach for Mining Field Workers". W 2024 7th International Conference on Circuit Power and Computing Technologies (ICCPCT), 1659–63. IEEE, 2024. http://dx.doi.org/10.1109/iccpct61902.2024.10673253.
Pełny tekst źródłaMansoor, Zara, Mustansar Ali Ghazanfar, Syed Muhammad Anwar, Ahmed S. Alfakeeh i Khaled H. Alyoubi. "Pain Prediction in Humans using Human Brain Activity Data". W Companion of the The Web Conference 2018. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3184558.3186348.
Pełny tekst źródłaKarthikeyan, M. V., Mohamed Faisal M i Jithesh R. "Public Human Assault Prediction Using Human Activity Recognition with AI". W 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, 2024. http://dx.doi.org/10.1109/adics58448.2024.10533461.
Pełny tekst źródłaZiaeefard, Maryam, Robert Bergevin i Jean-Francois Lalonde. "Deep Uncertainty Interpretation in Dyadic Human Activity Prediction". W 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2017. http://dx.doi.org/10.1109/icmla.2017.00-55.
Pełny tekst źródłaDönnebrink, Robin, Fernando Moya Rueda, Rene Grzeszick i Maximilian Stach. "Miss-placement Prediction of Multiple On-body Devices for Human Activity Recognition". W iWOAR 2023: 8th international Workshop on Sensor-Based Activity Recognition and Artificial Intelligence. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3615834.3615838.
Pełny tekst źródłaDong-Gyu Lee i Seong-Whan Lee. "Human activity prediction based on Sub-volume Relationship Descriptor". W 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7899939.
Pełny tekst źródłaRodrigues, Royston, Neha Bhargava, Rajbabu Velmurugan i Subhasis Chaudhuri. "Multi-timescale Trajectory Prediction for Abnormal Human Activity Detection". W 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2020. http://dx.doi.org/10.1109/wacv45572.2020.9093633.
Pełny tekst źródłaNagpal, Diana, i Shikha Gupta. "Human Activity Recognition and Prediction: Overview and Research Gaps". W 2023 IEEE 8th International Conference for Convergence in Technology (I2CT). IEEE, 2023. http://dx.doi.org/10.1109/i2ct57861.2023.10126458.
Pełny tekst źródłaRaporty organizacyjne na temat "Human Activity Prediction"
Allen-Dumas, Melissa, Kuldeep Kurte, Haowen Xu, Jibonananda Sanyal i Guannan Zhang. A Spatiotemporal Sequence Forecasting Platform to Advance the Predictionof Changing Spatiotemporal Patterns of CO2 Concentrationby Incorporating Human Activity and Hydrological Extremes. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769653.
Pełny tekst źródłaHarris, Virginia, Gerald C. Nelson i Steven Stone. Spatial Econometric Analysis and Project Evaluation: Modeling Land Use Change in the Darién. Inter-American Development Bank, listopad 1999. http://dx.doi.org/10.18235/0008801.
Pełny tekst źródłaAlter, Ross, Michelle Swearingen i Mihan McKenna. The influence of mesoscale atmospheric convection on local infrasound propagation. Engineer Research and Development Center (U.S.), luty 2024. http://dx.doi.org/10.21079/11681/48157.
Pełny tekst źródłaSaville, Alan, i Caroline Wickham-Jones, red. Palaeolithic and Mesolithic Scotland : Scottish Archaeological Research Framework Panel Report. Society for Antiquaries of Scotland, czerwiec 2012. http://dx.doi.org/10.9750/scarf.06.2012.163.
Pełny tekst źródłaEparkhina, Dina. EuroSea Legacy Report. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d8.12.
Pełny tekst źródła