Artykuły w czasopismach na temat „Hybrid immunity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid immunity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Crotty, Shane. "Hybrid immunity." Science 372, no. 6549 (2021): 1392–93. http://dx.doi.org/10.1126/science.abj2258.
Pełny tekst źródłaTang, Jinyi, Arka Chaudhuri, Panke Qu, et al. "Respiratory mucosal immunity against SARS-CoV-2 after vaccination and infection." Journal of Immunology 212, no. 1_Supplement (2024): 1559_5071. http://dx.doi.org/10.4049/jimmunol.212.supp.1559.5071.
Pełny tekst źródłaShi, Meiqing, Liping Su, Sigou Hao, Xulin Guo, and Jim Xiang. "Fusion Hybrid of Dendritic Cells and Engineered Tumor Cells Expressing Interleukin-12 Induces Type 1 Immune Responses against Tumor." Tumori Journal 91, no. 6 (2005): 531–38. http://dx.doi.org/10.1177/030089160509100614.
Pełny tekst źródłaSizyakina, L. P., V. Ya Zakurskaya, and I. I. Andreeva. "Capacities of hybrid immunity: objective realities." Immunologiya 45, no. 3 (2024): 300–311. http://dx.doi.org/10.33029/1816-2134-2024-45-3-300-311.
Pełny tekst źródłaKanokudom, Sitthichai, Jira Chansaenroj, Suvichada Assawakosri, et al. "Real-World Study: Hybrid Immunity against SARS-CoV-2 Influences the Antibody Levels and Persistency Lasting More than One Year." Vaccines 11, no. 11 (2023): 1693. http://dx.doi.org/10.3390/vaccines11111693.
Pełny tekst źródłaBakunov, Aleksey Lvovich, Sergey Leonidovich Rubtsov, Artyom Alekseevich Vyazovoy, Nadezhda Vasilievna Gulaeva, and Aleksey Viktorovich Milekhin. "Evaluation of a promising potato hybrid material in terms of plasticity, genotype stability and resistance to pathogens." Agrarian Scientific Journal, no. 1 (February 7, 2025): 4–10. https://doi.org/10.28983/asj.y2025i1pp4-10.
Pełny tekst źródłaTatarnikova, V. V., V. I. Dubrovina, N. O. Kiseleva, et al. "Effect of Immunity to SARS-CoV-2 Virus on Blood Cellular Composition." Epidemiology and Vaccinal Prevention 23, no. 2 (2024): 50–60. http://dx.doi.org/10.31631/2073-3046-2024-23-2-50-60.
Pełny tekst źródłaKodera, Sachiko, Akito Takada, Essam A. Rashed, and Akimasa Hirata. "Projection of COVID-19 Positive Cases Considering Hybrid Immunity: Case Study in Tokyo." Vaccines 11, no. 3 (2023): 633. http://dx.doi.org/10.3390/vaccines11030633.
Pełny tekst źródłaLivieratos, Achilleas, Lars Erik Schiro, Charalambos Gogos, and Karolina Akinosoglou. "Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2." Vaccines 12, no. 12 (2024): 1444. https://doi.org/10.3390/vaccines12121444.
Pełny tekst źródłaDiani, Sara, Erika Leonardi, Attilio Cavezzi, et al. "SARS-CoV-2—The Role of Natural Immunity: A Narrative Review." Journal of Clinical Medicine 11, no. 21 (2022): 6272. http://dx.doi.org/10.3390/jcm11216272.
Pełny tekst źródłaDuché, Denis, Aurélie Frenkian, Valérie Prima, and Roland Lloubès. "Release of Immunity Protein Requires Functional Endonuclease Colicin Import Machinery." Journal of Bacteriology 188, no. 24 (2006): 8593–600. http://dx.doi.org/10.1128/jb.00941-06.
Pełny tekst źródłaJohnsen, Line, Gunnar Fimland, Dimitris Mantzilas, and Jon Nissen-Meyer. "Structure-Function Analysis of Immunity Proteins of Pediocin-Like Bacteriocins: C-Terminal Parts of Immunity Proteins Are Involved in Specific Recognition of Cognate Bacteriocins." Applied and Environmental Microbiology 70, no. 5 (2004): 2647–52. http://dx.doi.org/10.1128/aem.70.5.2647-2652.2004.
Pełny tekst źródłaSharma, Prashant, Ji Beom Shin, Bum Chul Park, et al. "Application of radially grown ZnO nanowires on poly-l-lactide microfibers complexed with a tumor antigen for cancer immunotherapy." Nanoscale 11, no. 10 (2019): 4591–600. http://dx.doi.org/10.1039/c8nr08704k.
Pełny tekst źródłaLoyal, Lucie, Julian Braun, Ulf Reimer, et al. "Hybrid immunity-based induction of durable pan-endemic-coronavirus immunity in the elderly." Cell Reports 44, no. 2 (2025): 115314. https://doi.org/10.1016/j.celrep.2025.115314.
Pełny tekst źródłaChavda, Vivek P., Suneetha Vuppu, Toshika Mishra, and Pankti Balar. "The Emergence of Hybrid Variants of SARS-CoV-2: Towards Hybrid Immunity." Vaccines 11, no. 4 (2023): 764. http://dx.doi.org/10.3390/vaccines11040764.
Pełny tekst źródłaBhattacharya, Madhumita, and Taraprasad Chattopadhyay. "Interference-Immunity of the Injection-Locked Hybrid Discriminator." IETE Journal of Research 40, no. 2-3 (1994): 69–73. http://dx.doi.org/10.1080/03772063.1994.11437171.
Pełny tekst źródłaRoza, Des. "INCREASE OF IMMUNITY CANTIK HYBRID GROUPER JUVENILES BY LIPOPOLYSACCHARIDE (LPS)." Jurnal Ilmu dan Teknologi Kelautan Tropis 9, no. 1 (2017): 161–72. http://dx.doi.org/10.29244/jitkt.v9i1.17927.
Pełny tekst źródłaSpreco, Armin, Örjan Dahlström, Anna Jöud, et al. "Effectiveness of the BNT162b2 mRNA Vaccine Compared with Hybrid Immunity in Populations Prioritized and Non-Prioritized for COVID-19 Vaccination in 2021–2022: A Naturalistic Case-Control Study in Sweden." Vaccines 10, no. 8 (2022): 1273. http://dx.doi.org/10.3390/vaccines10081273.
Pełny tekst źródłaGujjarlapudi, Deepika, Ankit Mittal, Rupjyoti Talukdar, et al. "COVID-19 vaccination-infection status and immunological profile from India: A case study for prioritizing at risk population for targeted immunization." Journal of Family Medicine and Primary Care 14, no. 7 (2025): 2885–91. https://doi.org/10.4103/jfmpc.jfmpc_1977_24.
Pełny tekst źródłaRussell, Rodney S. "Hybrid Immunity Against Severe Acute Respiratory Syndrome Coronavirus 2." Viral Immunology 35, no. 6 (2022): 391. http://dx.doi.org/10.1089/vim.2022.0116.
Pełny tekst źródłaShervani, Zameer, Deepali Bhardwaj, Roma Nikhat, et al. "Serosurvey of Haryana and Odisha: COVID-19 Hybrid Immunity." European Journal of Medical and Health Sciences 4, no. 2 (2022): 27–32. http://dx.doi.org/10.24018/ejmed.2022.4.2.1173.
Pełny tekst źródłaDiego, Juan García-Bernalt, Gagandeep Singh, Sonia Jangra, et al. "Breakthrough infections by SARS-CoV-2 variants boost cross-reactive hybrid immune responses in mRNA-vaccinated Golden Syrian hamsters." PLOS Pathogens 20, no. 1 (2024): e1011805. http://dx.doi.org/10.1371/journal.ppat.1011805.
Pełny tekst źródłaRodriguez Velásquez, Sabina, Loza Estifanos Biru, Sandrine Marie Hakiza, et al. "Long-term levels of protection of different types of immunity against the Omicron variant: a rapid literature review." Swiss Medical Weekly 154, no. 5 (2024): 3732. http://dx.doi.org/10.57187/s.3732.
Pełny tekst źródłaLivieratos, Achilleas, Charalambos Gogos, and Karolina Akinosoglou. "Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes." Viruses 16, no. 5 (2024): 685. http://dx.doi.org/10.3390/v16050685.
Pełny tekst źródłaKozlovskiy, Vladimir, Pavel Nikolaev, Alexander Podgorniy, Alexey Kritskiy, and Luiza Shamina. "Experimental studies of a hybrid car and electric car interference immunity." E3S Web of Conferences 221 (2020): 01001. http://dx.doi.org/10.1051/e3sconf/202022101001.
Pełny tekst źródłaJi, Hongshan, and Zhiguo Zhou. "A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy." Cancers 14, no. 14 (2022): 3505. http://dx.doi.org/10.3390/cancers14143505.
Pełny tekst źródłaKurmangaliyeva, Saulesh S., Akzhan M. Madenbayeva, Saltanat T. Urazayeva, Yerlan Sh Bazargaliyev, Khatimya I. Kudabayeva, and Kairat B. Kurmangaliyev. "Comparative Analysis of Vaccine-induced Immunity and Natural Immunity in Post-COVID Patients." West Kazakhstan Medical Journal 66, no. 4 (2024): 387–400. https://doi.org/10.18502/wkmj.v66i4.17770.
Pełny tekst źródłaTikhomirova, K. K., S. M. Kharit, and O. V. Goleva. "Do repeated vaccinations affect the incidence of coronavirus infection?" Journal Infectology 17, no. 2 (2025): 73–79. https://doi.org/10.22625/2072-6732-2025-17-2-73-79.
Pełny tekst źródłaBarbieri, Elisa, Nhung T. H. Trinh, Costanza Di Chiara, et al. "Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy." Vaccines 13, no. 7 (2025): 698. https://doi.org/10.3390/vaccines13070698.
Pełny tekst źródłaShenoy, Padmanabha, Sakir Ahmed, Aby Paul, et al. "Hybrid immunity versus vaccine-induced immunity against SARS-CoV-2 in patients with autoimmune rheumatic diseases." Lancet Rheumatology 4, no. 2 (2022): e80-e82. http://dx.doi.org/10.1016/s2665-9913(21)00356-8.
Pełny tekst źródłaE. A. Imelbaeva, E. A., A. Zh Gilmanov, and L. M. Saptarova. "Results of assessing herd immunity to SARS-CoV-2 in medical workers." Terapevt (General Physician), no. 10 (October 27, 2023): 6–11. http://dx.doi.org/10.33920/med-12-2310-01.
Pełny tekst źródłaChen, Jonathan, Linda Nieman, Maxwell Spurrell, Justin Gainor, and Nir Hacohen. "Abstract 5784: Spatial clustering reveals immune hub interaction with reservoir of stem-like CD8 T cells and predicts immunotherapy response in lung cancer patients." Cancer Research 83, no. 7_Supplement (2023): 5784. http://dx.doi.org/10.1158/1538-7445.am2023-5784.
Pełny tekst źródłaLiu, Zihui, Binglin Chen, Zhiying Zou, et al. "Non-Additive and Asymmetric Allelic Expression of p38 mapk in Hybrid Tilapia (Oreochromis niloticus ♀ × O. aureus ♂)." Animals 14, no. 2 (2024): 266. http://dx.doi.org/10.3390/ani14020266.
Pełny tekst źródłaXiao, Wei, Binglin Chen, Jun Wang, et al. "Integration of mRNA and miRNA Profiling Reveals Heterosis in Oreochromis niloticus × O. aureus Hybrid Tilapia." Animals 12, no. 5 (2022): 640. http://dx.doi.org/10.3390/ani12050640.
Pełny tekst źródłaSpinardi, Julia R., and Amit Srivastava. "Hybrid Immunity to SARS-CoV-2 from Infection and Vaccination—Evidence Synthesis and Implications for New COVID-19 Vaccines." Biomedicines 11, no. 2 (2023): 370. http://dx.doi.org/10.3390/biomedicines11020370.
Pełny tekst źródłaJOLY, P., V. GUESDON, E. FROMONT, et al. "Heterozygosity and parasite intensity: lung parasites in the water frog hybridization complex." Parasitology 135, no. 1 (2007): 95–104. http://dx.doi.org/10.1017/s0031182007003599.
Pełny tekst źródłaRoza, Des. "INCREASE OF IMMUNITY CANTIK HYBRID GROUPER JUVENILES BY LIPOPOLYSACCHARIDE (LPS)." Jurnal Ilmu dan Teknologi Kelautan Tropis 9, no. 1 (2017): 161. http://dx.doi.org/10.28930/jitkt.v9i1.17927.
Pełny tekst źródłaGoldblatt, David. "SARS-CoV-2: from herd immunity to hybrid immunity." Nature Reviews Immunology, April 19, 2022. http://dx.doi.org/10.1038/s41577-022-00725-0.
Pełny tekst źródłaRothoeft, T., C. Maier, A. Talarico, et al. "Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents." Infection, March 18, 2024. http://dx.doi.org/10.1007/s15010-024-02225-w.
Pełny tekst źródłaFrans, Glynis, Doreen Dillaerts, Tom Dehaemers, et al. "Complementarity determining regions in SARS-CoV-2 hybrid immunity." Frontiers in Immunology 14 (February 21, 2023). http://dx.doi.org/10.3389/fimmu.2023.1050037.
Pełny tekst źródłaBausch-Jurken, Mary, and Galit Alter. "The immunological impact of revaccination in a hybrid-immune world." Frontiers in Immunology 16 (June 9, 2025). https://doi.org/10.3389/fimmu.2025.1588259.
Pełny tekst źródłaLupton, Deborah. "Immunities in the COVID age: a sociomaterial and more-than-human perspective." Social Theory & Health 23, no. 1 (2025). https://doi.org/10.1057/s41285-025-00224-x.
Pełny tekst źródłaUusküla, Anneli, Heti Pisarev, Anna Tisler, et al. "Risk of SARS-CoV-2 infection and hospitalization in individuals with natural, vaccine-induced and hybrid immunity: a retrospective population-based cohort study from Estonia." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-47043-6.
Pełny tekst źródłaBoyton, Rosemary J., and Daniel M. Altmann. "Imprinted hybrid immunity against XBB reinfection." Lancet Infectious Diseases, March 2023. http://dx.doi.org/10.1016/s1473-3099(23)00138-x.
Pełny tekst źródłaThe Lancet Infectious Diseases. "Why hybrid immunity is so triggering." Lancet Infectious Diseases, November 2022. http://dx.doi.org/10.1016/s1473-3099(22)00746-0.
Pełny tekst źródłaAltarawneh, Heba N., Hiam Chemaitelly, Houssein H. Ayoub, et al. "1966. Protection afforded by prior infection, vaccination, and hybrid immunity against symptomatic BA.1 and BA.2 Omicron infections." Open Forum Infectious Diseases 9, Supplement_2 (2022). http://dx.doi.org/10.1093/ofid/ofac492.1591.
Pełny tekst źródłaGuedalia, Joshua, Michal Lipschuetz, Adva Cahen-Peretz, et al. "Maternal hybrid immunity and risk of infant COVID-19 hospitalizations: national case-control study in Israel." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-46694-x.
Pełny tekst źródłaYang, Li, Pengtao Liu, Xuncheng Wang, et al. "A central circadian oscillator confers defense heterosis in hybrids without growth vigor costs." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22268-z.
Pełny tekst źródładen Hartog, Gerco, Stijn P. Andeweg, Christina E. Hoeve, et al. "Assessment of hybrid population immunity to SARS-CoV-2 following breakthrough infections of distinct SARS-CoV-2 variants by the detection of antibodies to nucleoprotein." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-45718-8.
Pełny tekst źródłaCalvo-Baltanás, Vanesa, Jinge Wang, and Eunyoung Chae. "Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances." Frontiers in Plant Science 11 (February 16, 2021). http://dx.doi.org/10.3389/fpls.2020.576796.
Pełny tekst źródła