Artykuły w czasopismach na temat „Hydrazine oxidation reaction (HHOR)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydrazine oxidation reaction (HHOR)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yu, Ting, Hu Zhang, Yongzhi Ning, Hongling Li, Ziteng Gao, Bo Wang i Zhijun Cen. "Experimental and Kinetic Simulations of Technetium-Catalyzed Hydrazine Oxidation in Nitric Acid Solution". Processes 12, nr 11 (23.10.2024): 2319. http://dx.doi.org/10.3390/pr12112319.
Pełny tekst źródłaLiu, Weiwei, Junfeng Xie, Yanqing Guo, Shanshan Lou, Li Gao i Bo Tang. "Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation". Journal of Materials Chemistry A 7, nr 42 (2019): 24437–44. http://dx.doi.org/10.1039/c9ta07857f.
Pełny tekst źródłaBrockmann, Marcela, Freddy Navarro, José Ibarra, Constanza León, Francisco Armijo, María Jesús Aguirre, Galo Ramírez i Roxana Arce. "Effect of the Metal of a Metallic Ionic Liquid (-butyl-methylimidazolium tetrachloroferrate) on the Oxidation of Hydrazine". Catalysts 14, nr 6 (31.05.2024): 359. http://dx.doi.org/10.3390/catal14060359.
Pełny tekst źródłaMiao, Ruiyang, i Richard G. Compton. "The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction". Journal of Physical Chemistry Letters 12, nr 6 (5.02.2021): 1601–5. http://dx.doi.org/10.1021/acs.jpclett.1c00070.
Pełny tekst źródłaLee, Hak Hyeon, JI Hoon CHOI, Dong Su Kim i Hyung Koun Cho. "Diffusion-Restricted Cation Exchange Derived Rhodium Nanoparticles for Hydrazine Assisted Hydrogen Production". ECS Meeting Abstracts MA2023-02, nr 49 (22.12.2023): 3222. http://dx.doi.org/10.1149/ma2023-02493222mtgabs.
Pełny tekst źródłaLi, Yapeng, Jihua Zhang, Yi Liu, Qizhu Qian, Ziyun Li, Yin Zhu i Genqiang Zhang. "Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis". Science Advances 6, nr 44 (październik 2020): eabb4197. http://dx.doi.org/10.1126/sciadv.abb4197.
Pełny tekst źródłaWang, Honglei, i Shengyang Tao. "Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H2 evolution". Nanoscale Advances 3, nr 8 (2021): 2280–86. http://dx.doi.org/10.1039/d1na00043h.
Pełny tekst źródłaLi, Bin, Kefeng Wang, Jingxiao Ren i Peng Qu. "NiOOH@Cobalt copper carbonate hydroxide nanorods as bifunctional electrocatalysts for highly efficient water and hydrazine oxidation". New Journal of Chemistry 46, nr 16 (2022): 7615–25. http://dx.doi.org/10.1039/d2nj00518b.
Pełny tekst źródłaMa, Xiao, Jianmei Wang, Danni Liu, Rongmei Kong, Shuai Hao, Gu Du, Abdullah M. Asiri i Xuping Sun. "Hydrazine-assisted electrolytic hydrogen production: CoS2nanoarray as a superior bifunctional electrocatalyst". New Journal of Chemistry 41, nr 12 (2017): 4754–57. http://dx.doi.org/10.1039/c7nj00326a.
Pełny tekst źródłaShukla, Madhurani, i Kishore K. Tiwari. "A Simple and Low - Cost Spectrophotometric Method for the Determination Of Hydrazine With Methyl Red-iodate System". Journal of Ravishankar University (PART-B) 30, nr 1 (30.01.2021): 01–06. http://dx.doi.org/10.52228/jrub.2017-30-1-1.
Pełny tekst źródłaKadam, Ravishankar G., Tao Zhang, Dagmar Zaoralová, Miroslav Medveď, Aristides Bakandritsos, Ondřej Tomanec, Martin Petr i in. "Single Co‐Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction". Small 17, nr 16 (30.03.2021): 2006477. http://dx.doi.org/10.1002/smll.202006477.
Pełny tekst źródłaZhang, Chaoxiong, Wenjuan Yuan, Qian Wang, Xianyun Peng, Xijun Liu i Jun Luo. "Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction". ChemNanoMat 6, nr 10 (22.07.2020): 1474–78. http://dx.doi.org/10.1002/cnma.202000337.
Pełny tekst źródłaShi, Jie, Qintao Sun, Jinxin Chen, Wenxiang Zhu, Tao Cheng, Mengjie Ma, Zhenglong Fan i in. "Nitrogen contained rhodium nanosheet catalysts for efficient hydrazine oxidation reaction". Applied Catalysis B: Environmental 343 (kwiecień 2024): 123561. http://dx.doi.org/10.1016/j.apcatb.2023.123561.
Pełny tekst źródłaLiu, Meng, Rong Zhang, Lixue Zhang, Danni Liu, Shuai Hao, Gu Du, Abdullah M. Asiri, Rongmei Kong i Xuping Sun. "Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction". Inorganic Chemistry Frontiers 4, nr 3 (2017): 420–23. http://dx.doi.org/10.1039/c6qi00384b.
Pełny tekst źródłaIonita, Petre, Marcela Rovinaru i Ovidiu Maior. "THE PREPARATION AND SOME REACTION OF 2,2-DIPHENYL-1-(3,6-DINITR0-4-COUMARINYL) HYDRAZYL FREE RADICAL". SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 6, nr 7 (20.12.1998): 59–66. http://dx.doi.org/10.48141/sbjchem.v6.n7.1998.58_1998_2.pdf.
Pełny tekst źródłaJetten, M. S. M., I. Cirpus, B. Kartal, L. van Niftrik, K. T. van de Pas-Schoonen, O. Sliekers, S. Haaijer i in. "1994–2004: 10 years of research on the anaerobic oxidation of ammonium". Biochemical Society Transactions 33, nr 1 (1.02.2005): 119–23. http://dx.doi.org/10.1042/bst0330119.
Pełny tekst źródłaWang, Yu‐Cheng, Li‐Yang Wan, Pei‐Xin Cui, Lei Tong, Yu‐Qi Ke, Tian Sheng, Miao Zhang i in. "Hydrazine Oxidation Reaction: Porous Carbon Membrane‐Supported Atomically Dispersed Pyrrole‐Type FeN 4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction (Small 31/2020)". Small 16, nr 31 (sierpień 2020): 2070171. http://dx.doi.org/10.1002/smll.202070171.
Pełny tekst źródłaKumaran, R., S. Boopathi, M. Kundu, M. Sasidharan i G. Maduraiveeran. "The morphology-dependent electrocatalytic activities of spinel-cobalt oxide nanomaterials for direct hydrazine fuel cell application". New Journal of Chemistry 42, nr 15 (2018): 13087–95. http://dx.doi.org/10.1039/c8nj01622d.
Pełny tekst źródłaYue, Xiaoyu, Andrea Manach, Junzhe Dong i Wei Gao. "Preparation of Ag-decorated TiO2 nanotube electrode and its catalytic property". International Journal of Modern Physics B 33, nr 01n03 (30.01.2019): 1940023. http://dx.doi.org/10.1142/s021797921940023x.
Pełny tekst źródłaJiao, Dongxu, Yu Tian, Hongxia Wang, Qinghai Cai i Jingxiang Zhao. "Single transition metal atoms anchored on a C2N monolayer as efficient catalysts for hydrazine electrooxidation". Physical Chemistry Chemical Physics 22, nr 29 (2020): 16691–700. http://dx.doi.org/10.1039/d0cp02930k.
Pełny tekst źródłaTang, Piaoping, He Wen i Ping Wang. "Hierarchically nanostructured Ni2Fe2N as an efficient electrocatalyst for hydrazine oxidation reaction". Chemical Engineering Journal 431 (marzec 2022): 134123. http://dx.doi.org/10.1016/j.cej.2021.134123.
Pełny tekst źródłaLashkenari, Mohammad Soleimani, Behnia Shahrokhi, Mohsen Ghorbani, Jaber falah i Hussein Rostami. "Polyrhodanine/NiFe2 O4 nanocomposite: A novel electrocatalyst for hydrazine oxidation reaction". International Journal of Hydrogen Energy 43, nr 24 (czerwiec 2018): 11244–52. http://dx.doi.org/10.1016/j.ijhydene.2018.05.019.
Pełny tekst źródłaShi, Jie, Qintao Sun, Wenxiang Zhu, Tao Cheng, Fan Liao, Mengjie Ma, Junjun Yang, Hao Yang, Zhenglong Fan i Mingwang Shao. "Lattice stain dominated hydrazine oxidation reaction in single-metal-element nanosheet". Chemical Engineering Journal 463 (maj 2023): 142385. http://dx.doi.org/10.1016/j.cej.2023.142385.
Pełny tekst źródłaKoh, Katherine, Yuying Meng, Xiaoxi Huang, Xiaoxin Zou, Manish Chhowalla i Tewodros Asefa. "N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation". Chemical Communications 52, nr 93 (2016): 13588–91. http://dx.doi.org/10.1039/c6cc06140k.
Pełny tekst źródłaGao, Xueqing, Yigang Ji, Shan He, Shuni Li i Jong-Min Lee. "Self-assembly synthesis of reduced graphene oxide-supported platinum nanowire composites with enhanced electrocatalytic activity towards the hydrazine oxidation reaction". Catalysis Science & Technology 6, nr 9 (2016): 3143–48. http://dx.doi.org/10.1039/c5cy01764e.
Pełny tekst źródłaKovaleva, Svetlana V., i Andrey V. Korshunov. "Voltammetric method for determining hydrazine at a composite polymer-carbon electrode modified with gold particles". Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 335, nr 11 (27.11.2024): 142–56. http://dx.doi.org/10.18799/24131830/2024/11/4858.
Pełny tekst źródłaMa, Yuanyuan, Hui Wang, Weizhong Lv, Shan Ji, Bruno G. Pollet, Shunxi Li i Rongfang Wang. "Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine". RSC Advances 5, nr 84 (2015): 68655–61. http://dx.doi.org/10.1039/c5ra13774h.
Pełny tekst źródłaStepanova, Elena V., i Andrei I. Stepanov. "UNUSUAL WAY OF REACTION OF 3-AMINO-4-(5-CHLOROMETHYL-1,2,4-OXADIAZOLE-3-YL)-FURAZAN WITH HYDRAZINE". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, nr 4 (12.05.2017): 26. http://dx.doi.org/10.6060/tcct.2017604.5522.
Pełny tekst źródłaBreza, Martin, i Alena Manova. "Hydrazine Oxidation in Aqueous Solutions I: N4H6 Decomposition". Inorganics 11, nr 10 (18.10.2023): 413. http://dx.doi.org/10.3390/inorganics11100413.
Pełny tekst źródłaNa, Jaedo, i Seong Jung Kwon. "Expanding Single-Entity Electrochemistry with Agarose Hydrogel: Enhanced Signal Stability". ECS Meeting Abstracts MA2024-02, nr 70 (22.11.2024): 4904. https://doi.org/10.1149/ma2024-02704904mtgabs.
Pełny tekst źródłaSchalk, Jos, Hege Oustad, J. Gijs Kuenen i Mike S. M. Jetten. "The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism". FEMS Microbiology Letters 158, nr 1 (styczeń 1998): 61–67. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12801.x.
Pełny tekst źródłaHu, Sheng-Nan, Na Tian, Meng-Ying Li, Chi Xiao, Yao-Yin Lou, Zhi-You Zhou i Shi-Gang Sun. "Trapezohedral platinum nanocrystals with high-index facets for high-performance hydrazine electrooxidation". Chemical Synthesis 3, nr 1 (2023): 4. http://dx.doi.org/10.20517/cs.2022.32.
Pełny tekst źródłaZhang, Weijie, Pingping Jiang, Ying Wang, Jian Zhang, Yongxue Gao i Pingbo Zhang. "Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction". RSC Adv. 4, nr 93 (2014): 51544–47. http://dx.doi.org/10.1039/c4ra09304f.
Pełny tekst źródłaMitic, Violeta, Snezana Nikolic i Vesna Stankov-Jovanovic. "Kinetic spectrophotometric determination of hydrazine". Open Chemistry 8, nr 3 (1.06.2010): 559–65. http://dx.doi.org/10.2478/s11532-010-0021-3.
Pełny tekst źródłaLiu, Feng, Xin Jiang, Hong-Hui Wang, Cheng Chen, Yu-Han Yang, Tian Sheng, Yong-Sheng Wei, Xin-Sheng Zhao i Lu Wei. "Boosting Electrocatalytic Hydrazine Oxidation Reaction on High-Index Faceted Au Concave Trioctahedral Nanocrystals". ACS Sustainable Chemistry & Engineering 10, nr 2 (3.01.2022): 696–702. http://dx.doi.org/10.1021/acssuschemeng.1c07700.
Pełny tekst źródłaWang, Yahui, Xianyi Liu, Juan Han, Yumao Kang, Yajun Mi i Wei Wang. "Phosphatized pseudo-core-shell Ni@Pt/C electrocatalysts for efficient hydrazine oxidation reaction". International Journal of Hydrogen Energy 45, nr 11 (luty 2020): 6360–68. http://dx.doi.org/10.1016/j.ijhydene.2019.12.132.
Pełny tekst źródłaKahani, Seyed Abolghasem, i Massumeh Khedmati. "Mechanochemical Preparation of Cobalt Nanoparticles through a Novel Intramolecular Reaction in Cobalt(II) Complexes". Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/246254.
Pełny tekst źródłaOp den Camp, H. J. M., B. Kartal, D. Guven, L. A. M. P. van Niftrik, S. C. M. Haaijer, W. R. L. van der Star, K. T. van de Pas-Schoonen i in. "Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria". Biochemical Society Transactions 34, nr 1 (20.01.2006): 174–78. http://dx.doi.org/10.1042/bst0340174.
Pełny tekst źródłaPang, Kanglei, i Kanglei Pang. "Redirecting Configuration of Atomically Dispersed Selenium Catalytic Sites for Efficient Hydrazine Oxidation". ECS Meeting Abstracts MA2024-02, nr 60 (22.11.2024): 4065. https://doi.org/10.1149/ma2024-02604065mtgabs.
Pełny tekst źródłaWang, Hui, Qing Dong, Lu Lei, Shan Ji, Palanisamy Kannan, Palaniappan Subramanian i Amar Prasad Yadav. "Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine". Nanomaterials 11, nr 11 (26.10.2021): 2857. http://dx.doi.org/10.3390/nano11112857.
Pełny tekst źródłaLellek, Vit, Cheng-yi Chen, Wanggui Yang, Jie Liu, Xuebao Ji i Roger Faessler. "An Efficient Synthesis of Substituted Pyrazoles from One-Pot Reaction of Ketones, Aldehydes, and Hydrazine Monohydrochloride". Synlett 29, nr 08 (15.02.2018): 1071–75. http://dx.doi.org/10.1055/s-0036-1591941.
Pełny tekst źródłaMótyán, Gergő, Barnabás Molnár, János Wölfling i Éva Frank. "Microwave-Assisted Stereoselective Heterocyclization to Novel Ring d-fused Arylpyrazolines in the Estrone Series". Molecules 24, nr 3 (4.02.2019): 569. http://dx.doi.org/10.3390/molecules24030569.
Pełny tekst źródłaChen, Shi, Changlai Wang, Shuai Liu, Minxue Huang, Jian Lu, Pengping Xu, Huigang Tong, Lin Hu i Qianwang Chen. "Boosting Hydrazine Oxidation Reaction on CoP/Co Mott–Schottky Electrocatalyst through Engineering Active Sites". Journal of Physical Chemistry Letters 12, nr 20 (17.05.2021): 4849–56. http://dx.doi.org/10.1021/acs.jpclett.1c00963.
Pełny tekst źródłaKim, Yong Seok, Byeongkyu Kim, Tae Yup Jeong, Na Hyeon Kim, Eunchae Ko, Jong Wook Bae i Chan-Hwa Chung. "The development of a gas-feeding CO2 fuel cell using direct hydrazine oxidation reaction". Journal of CO2 Utilization 73 (lipiec 2023): 102527. http://dx.doi.org/10.1016/j.jcou.2023.102527.
Pełny tekst źródłaMunde, Ajay, Priti Sharma, Somnath Dhawale, Ravishankar G. Kadam, Subodh Kumar, Hanumant B. Kale, Jan Filip, Radek Zboril, Bhaskar R. Sathe i Manoj B. Gawande. "Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions". Catalysts 12, nr 12 (2.12.2022): 1560. http://dx.doi.org/10.3390/catal12121560.
Pełny tekst źródłaYu, Hui Jiang, Zheng Guang Zou, Fei Long, Chun Yan Xie i Hao Ma. "Preparation of Graphene with Ultrasound-Assisted in the Process of Oxidation". Applied Mechanics and Materials 34-35 (październik 2010): 1784–87. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1784.
Pełny tekst źródłaZhu, Libo, Jian Huang, Ge Meng, Tiantian Wu, Chang Chen, Han Tian, Yafeng Chen i in. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production". Nature Communications 14, nr 1 (10.04.2023). http://dx.doi.org/10.1038/s41467-023-37618-2.
Pełny tekst źródłaXiao, Zehao, Jie Wang, Hongxiu Lu, Yinyin Qian, Qiang Zhang, Aidong Tang i Huaming Yang. "Hierarchical Co/MoNi Heterostructure Grown on Monocrystalline CoNiMoOx Nanorods with Robust Bifunctionality for Hydrazine-oxidation-assisted Energy-saving Hydrogen Evolution". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta02930a.
Pełny tekst źródłaBurshtein, Tomer Y., Kesha Tamakuwala, Matan Sananis, Ilya Grinberg, Nagaprasad Reddy Samala i David Eisenberg. "Understanding hydrazine oxidation electrocatalysis on undoped carbon". Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00213b.
Pełny tekst źródłaZhang, Chao, mengrui zhang, Jianping Zhu, Bin Liu, Yongkang Hou, Jingping Wang i Jingyang Niu. "Ultrafine Co6W6C as an Efficient Anode Catalyst for Direct Hydrazine Fuel Cell". Chemical Communications, 2021. http://dx.doi.org/10.1039/d1cc03446d.
Pełny tekst źródła